ABSTRACT. Credit score cutoff rules are a salient feature of mortgage markets and can be used to investigate the connection between securitization and lender moral hazard in the recent financial crisis. However, the conclusions of such research depend crucially on understanding the source and nature of these cutoff rules. We offer a theory of cutoff rules, and show that it fits the data better than the main alternative theory already in the literature. Furthermore, we use our theory to interpret the cutoff rule evidence, and conclude that private mortgage securitizers were in fact aware of and attempted to mitigate the moral hazard problem posed by securitization.
1. INTRODUCTION

A key question about the recent subprime mortgage crisis is whether securitization reduced originating lenders' incentives to carefully screen borrowers. A fundamental role of financial intermediaries is to produce information about prospective borrowers in order to allocate credit (Diamond, 1984; Boyd and Prescott, 1986). But when lenders sell the loans they originate to dispersed investors, their incentives to generate information and screen borrowers may be attenuated. On the other hand, rational loan purchasers may recognize this moral hazard problem and take steps to mitigate it. Determining whether securitization played a role in the recent sharp rise in mortgage defaults is critical to evaluating the social costs and benefits of securitization.

One promising research strategy for addressing this question is to use variation in the behavior of market participants induced by credit score cutoff rules. Examination of histograms of mortgage loans by credit score, such as Figure 1, reveal that they are step-wise functions. It appears that borrowers with credit scores above certain thresholds are treated differently than borrowers just below. But how exactly are they treated differently, and by whom? In this paper we attempt to distinguish between two explanations for the discontinuities, each with divergent implications for what mortgage cutoff rules tell us about the relationship between securitization and lender moral hazard.

We refer to the explanation currently most accepted in the literature as the secutizer-first theory. First put forth by Keys, Mukherjee, Seru, and Vig (2008) (hereafter, KMSV), it posits that secondary-market mortgage purchasers employ rules of thumb whereby they are exogenously more willing to purchase loans made to borrowers with credit scores just above some cutoff. This difference in the ease of securitization induces mortgage lenders to adopt weaker screening standards for loan applicants above this cutoff, since lenders know they will be less likely to keep these loans on their books. In industry parlance, they will have less “skin in the game.” Because lenders screen applicants more intensely below the cutoff than above, loans below the cutoff are fewer but of higher quality (i.e. lower default rate) than loans above the cutoff. We call this the “securitizer-first” theory because securitizers are thought to exogenously adopt a purchase cutoff rule, which causes lenders to adopt a screening cutoff rule in response. Under the securitizer-first theory, finding discontinuities in the default rate and securitization rate at the same credit score cutoff is evidence that securitization led to moral hazard in lender screening.
An alternate theory is the *lender-first* theory. When lenders face a fixed per-applicant cost to acquire additional information about each prospective borrower, cutoff rules in screening arise endogenously. Credit scores are used by lenders as a summary measure of default risk, with higher credit scores indicating lower default risk. Under the natural assumption that the benefit to lenders of collecting additional information is greater for higher default risk applicants, lenders will only collect additional information about applicants whose credit scores are below some cutoff (and hence the benefit of investigating outweighs the fixed cost). Our model thus predicts that the number of loans made and their default rate will be discontinuously lower for borrowers with credit scores just below the endogenous cutoff.

Such a cutoff rule in screening also results in a discontinuity in the amount of private information lenders have about loans. Private information is at the core of the moral hazard problem posed by securitization—if lenders sell their loans, they may not have incentives to collect this information and use it to screen loan applicants. Securitizers may respond to this problem in a variety of ways. Because the efficient amount of screening is greater and therefore more costly below the screening cutoff, rational securitizers unable to contract on screening directly due to asymmetric information may reduce loan purchases below the cutoff, leaving more loans on the books of lenders to maintain their incentives to bear the costs of efficient screening. In contrast, naive securitizers, as well as securitizers able to contract on screening behavior, may buy loans at equal rates on either side of the threshold. We call the theory “lender-first” because lenders independently employ the cutoff rule, and securitizers may (or may not) respond to it to police lender moral hazard. Under the lender-first theory, finding discontinuities in the default rate and the securitization rate at the same credit score cutoff is evidence that securitizers with asymmetric information adjusted purchases to maintain lenders’ incentives to screen. The robust prediction of the lender-first theory is that lenders will use cutoff rules—how securitizers respond depends upon the monitoring tools available to securitizers.

We investigate these two alternative theories using loan-level data and find that the lender-first theory of cutoff rules is substantially more consistent with empirical evidence than is the securitizer-first theory. We focus our investigation on the cutoff rule at the FICO score of 620.¹ We do this for two reasons: of all the apparent credit cutoff points, the discontinuity in frequency at 620 is the largest in log point terms; also, 620 is the focus of inquiry in previous research. After reviewing institutional evidence that lenders adopted a cutoff rule in screening at 620 for reasons

¹The credit scoring model developed by Fair Issac and Company (FICO) is the industry standard.
unrelated to the probability of securitization, we use a loan-level dataset to show that in several key mortgage samples there are discontinuities in the lending rate and the default rate at 620, but no discontinuity in the securitization rate. Without a securitization rate discontinuity at the cutoff, the securitizer-first theory is difficult to reconcile with the data.

Having established that the lender-first theory is the more likely explanation for the cutoff rules, we then interpret the evidence in light of the theory. We find that in the jumbo market of large loans, in which only private securitizers participate, the securitization rate is lower just below the screening threshold of 620. This suggests that private securitizers were aware of the moral hazard problem posed by loan purchases and sought to mitigate it.

However, in the conforming (non-jumbo) market dominated by Fannie Mae and Freddie Mac (the Government Sponsored Enterprises, or GSEs), there is a substantial jump in the default rate but no jump in the securitization rate at the 620 threshold. One explanation for this is that the GSEs were unaware of the threat of moral hazard. An arguably more plausible explanation is that, as large repeat players in the industry, the GSEs had alternative incentive instruments to police lender moral hazard.

Our paper contributes to a growing literature analyzing the causes of the subprime mortgage crisis. Mayer, Pence, and Sherlund (2009) documents many of the basic facts of the subprime crisis, and concludes that a combination of a decline in underwriting standards and a fall in house prices led to the sharp increase in defaults from 2005 to 2008. Further evidence on the central role of the fall in housing prices in the mortgage crisis is provided by Gerardi, Shapiro, and Willen (2007). Demyanyk and Van Hemert (2009) provides evidence that the increased future default rates of high LTV loans were to some extent priced into the mortgage rate well before the onset of the crisis, suggesting that securitizers who influence those rates were aware of the coming increase in defaults. The connection between securitization and the increase in defaults is investigated by Jiang, Nelson, and Vylacil (2009), Mian and Sufi (2008), and Rajan, Seru, and Vig (2008). Adelino, Gerardi, and Willen (2009) and Piskorski, Seru, and Vig (2008) investigate whether securitization inhibited modifications of loans for distressed borrowers.

Our work also relates to the literature on loan sales more generally. Gorton and Pennacchi (1995), Pennacchi (1988), and Sufi (2007) consider institutional mechanisms to mitigate the moral
hazard problem in screening and monitoring posed by loan sales, including the use of portfolio loans as an incentive instrument, while Drucker and Puri (2008) documents the use of loan covenants to address agency problems in loan sales.

The paper proceeds as follows. Section 2 presents the lender-first model. Section 3 presents the securitizer-first model. Section 4 provides institutional evidence of lenders’ use of cutoff rules in mortgage underwriting. Section 5 presents empirical evidence consistent with the lender-first model, but not the securitization-first model, and interprets the cutoff rule evidence to learn about the relationship between securitization and moral hazard. Section 6 concludes.

2. The Lender-First Model

Why might lenders adopt cutoff rules? We posit that discrete costs to lenders of information gathering about loan applicants yield the observed cutoff rules in screening. To make this point, we first analyze a baseline model of a portfolio lender (i.e., a lender that retains the loans it originates) and then consider the effects of adding securitization to the model.

2.1. Baseline model. There is a continuum of prospective borrowers of unit mass. Each borrower has a type \(x \) that represents hard information about the borrower that is relevant to predicting the performance of a loan to the borrower (e.g., a credit score). Let \(x \in [0,1] \) represent both the type of hard information about the borrower and his probability of repayment on a mortgage. Each borrower knows his type, and borrowers’ types are independently and identically distributed according to the strictly positive, continuous probability density function \(f(x) \). Borrowers would like to take out a mortgage for 1 unit of the numeraire good at time 0 to be repaid with interest at time 1, but they have an outside option such that they will refuse a loan offer with a gross interest rate above \(\bar{R} > 1 \). There is a single risk neutral lender with discount factor normalized to 1. At time 0 each borrower applies to the lender for a mortgage. The lender observes each applicant’s \(x \).

The lender then chooses whether to further investigate each borrower’s creditworthiness. To do so, the lender must bear a fixed cost \(c > 0 \) per applicant. This fixed cost arises from discreetness in the information production function available to the firm managers who set underwriting policy. For example, requiring loan officers to meet with loan applicants in person, or to perform manual underwriting in addition to the commonly used computer-aided automated underwriting process, entails a fixed cost per applicant. Moreover, it would be difficult for managers to specify
continuous investigation intensities for continuous distributions of borrowers, given difficulty in monitoring their agents’ screening behavior. Consequently, firm managers face a discrete choice set of investigation intensities, as we model\footnote{Though for simplicity we model a binary investigation choice, the model could be extended to accommodate multiple levels of discrete investigation intensity. Each would induce a separate investigation threshold, a prediction consistent with the observation of multiple thresholds in the data.}

If the lender investigates, then, if the borrower is a defaulter, the lender learns this with probability \(s \in (0, 1) \), and otherwise the lender observes nothing. The lender’s investigation thus reveals this “defaulter signal” about a borrower of type \(x \) with probability \((1 - x)s \). We assume that \(c < \frac{(R - 1)s}{R} \) so that investigation is cheap enough that it will pay for the lender to investigate some applicants. The lender then chooses whether to lend to each applicant and, if so, makes a take-it-or-leave-it interest rate offer \(R(x) \). Those offered loans then decide whether to accept the offer. In period 1, borrowers learn whether they are a defaulter, and the non-defaulters pay the lender \(R(x) \).

Obviously the lender never chooses to lend to applicants for which its investigation revealed the defaulter signal. Furthermore, because we have given the lender all of the bargaining power, it should be obvious that, if the lender lends, it is a dominant strategy to offer \(\bar{R} \), and for all borrowers offered a loan to accept. Hence, the equilibria of the game are characterized by an investigation strategy (which borrower types the lender investigates) and a lending strategy (to which types the lender offers loans). We now have our main result:

\textbf{Proposition 1.} In the unique equilibrium, the lender uses cutoff rules based on a lending threshold \(\bar{x} = \frac{1 - s + c}{R - s} \) and a screening threshold \(\bar{x} = 1 - \frac{c}{s} > x \):

1. The lender rejects borrowers with \(x < \bar{x} \)
2. The lender investigates borrowers with \(\bar{x} \leq x < \bar{x} \) and offers loans to those for which its investigation does not reveal the defaulter signal.
3. The lender offers loans to borrowers with \(x \geq \bar{x} \) without investigation.

All proofs are in the appendix.

With the equilibrium characterized, its implications for equilibrium loans are immediate. This screening behavior by lenders results in a discontinuous jump in the density of loans, denoted \(h(x) \), at the \(\bar{x} \) screening threshold proportional to \((1 - \bar{x})s \):

\(h(x) = (1 - \bar{x})s \)

\(h(x) = (1 - \bar{x})s \)
Corollary 1. The density of loans made in equilibrium is proportional to the following function:

\[
h(x) \propto \begin{cases}
0 & \text{if } x < \bar{x} \\
(1 - (1 - x)s)f(x) & \text{if } \bar{x} \leq x < \bar{x} \\
f(x) & \text{if } x \geq \bar{x}
\end{cases}
\]

Figure 2 depicts the discontinuities in \(h(x)\) at \(x\) and \(\bar{x}\). The density of loans jumps up at \(\bar{x}\) because the lender only screens out the sure defaulters just below \(\bar{x}\).

We have a similar result for equilibrium default rates:

Corollary 2. The default rate of equilibrium loans with hard information \(x\) is given by the following function, \(d(x)\):

\[
d(x) = \begin{cases}
\frac{(1-x)(1-s)}{1-(1-x)s} & \text{if } \bar{x} \leq x < \bar{x} \\
1 - x & \text{if } x \geq \bar{x}
\end{cases}
\]

Figure 3 depicts \(d(x)\). There are two important characteristics of equilibrium default rates. First, the default rate jumps discontinuously up when crossing the screening threshold \(\bar{x}\) from below (one can easily show that \(\frac{(1-x)(1-s)}{1-(1-x)s} < 1 - x\)). The reason it jumps at \(\bar{x}\) is because the lender only investigates applicants below \(\bar{x}\), which results in a lower default rate. Second, elsewhere, the equilibrium default rate is decreasing in \(x\).

Our model demonstrates how cutoff rules in screening emerge endogenously when there are discrete costs to generating information and the benefit to the lender of additional information varies smoothly with the lender’s initial estimate of the borrower’s default probability. Like the hard information \(x\) in the model, there is a monotonic relationship between FICO score and default risk. It is not surprising that lenders would use a FICO score cutoff to determine which loan applications warrant increased scrutiny. Mapped into our model, a FICO score of 620 corresponds to the screening threshold \(\bar{x}\). The intuition for how these discrete costs result in cutoff rules and discontinuities in default rates is straightforward: if lenders gave stricter scrutiny to loan applicants with 620 FICO scores, it would reduce the default rates of loans made at 620, but this reduction would not justify bearing the fixed cost \(c\) per applicant to collect more information. In contrast, for loan applicants with a FICO score of 619, the benefit of additional information outweighs the fixed cost.\(^3\)

\(^3\)A discontinuity in the aggregate data can persist even if there is a continuum of lenders each with its own \(c_i\). Supposing that a mass of lenders has already coordinated on a particular cutoff, it will not be advantageous for an individual lender
2.2. **Securitization.** Now consider the case in which a securitizer exists with a cost of funds slightly less than the lender’s cost of funds, so that its discount factor is \(\delta = 1 + \varepsilon \) for arbitrarily small \(\varepsilon \). While we call this purchaser a “securitizer,” all of our arguments apply to any secondary market purchaser of mortgages, not only those that package purchased loans and issue securities against them.

The securitizer and lender bargain over a contract characterized by two functions and an up-front payment: \(\sigma(x) \) denotes the fraction of loans of type \(x \) that the securitizer will purchase, \(T(x) \) represents the price that it will pay, and \(T \) represents an up-front payment that determines the ultimate division of surplus between the securitizer and lender. The game then proceeds as in the baseline model but, after loans are made, the lender sells a fraction \(\sigma(x) \) of loans of each type \(x \) to the securitizer for a payment \(T(x) \) per loan, with the securitizer choosing the particular loans that it purchases at each \(x \) at random.

We consider three sets of assumptions about securitizer behavior and information: a rational securitizer with symmetric information, a rational securitizer with asymmetric information, and a naive securitizer.

2.2.1. **Rational securitizer with symmetric information.** A rational securitizer with symmetric information is aware of the moral hazard problem that purchases may induce, and has strong tools with which to police it. In particular, the securitizer can directly observe the act of screening and can condition contracts on it.\(^4\) We derive the following proposition:

Proposition 2. In the equilibrium of the model with a rational securitizer with symmetric information, the lender’s behavior is the same as in the model without securitization, given in Proposition 7 and the fraction of loans securitized is \(\sigma(x) = 1 \) for all \(x > x \).

\(^4\)Equivalently, one can think of this as the reduced form of a dynamic model in which the securitizer can observe eventual default outcomes, make an inference about screening, and then credibly punish the lender.
Because screening is contractible, such a securitizer will require lenders to perform efficient screening below the cutoff and will purchase all loans. The model predicts we will find discontinuities in the lending rate and default rates, but not the securitization rate.

2.2.2. **Rational securitizer with asymmetric information.** We now assume that the purchaser does not observe any signal generated by investigations by the lender, or even whether the lender investigated, as this information is assumed to be “soft.” A rational securitizer with asymmetric information is aware of the potential moral hazard problem but has only limited tools to combat it. In particular, it can adjust the proportion of loans it purchases around the cutoff in order to maintain lender’s incentives to screen. Thus, unlike with the rational securitizer with asymmetric information, the contract cannot condition on whether the lender investigated or on whether a defaulter signal was revealed.

We now characterize the equilibrium:

Proposition 3. In the equilibrium of the model with a rational securitizer with asymmetric information, the lender’s behavior is the same as in the model without securitization, given in Proposition 7 and the fraction of loans securitized for each \(x \) is given by:

\[
\sigma^*(x) = \begin{cases}
\frac{\bar{R}_s(1-x)x-c}{\bar{R}_s(1-x)} & \text{if } \bar{x} \leq x < \bar{x} \\
1 & \text{if } x \geq \bar{x}
\end{cases}
\]

Figure 4 provides a notional diagram of equilibrium securitization rates. An important feature of the securitization rate is that it jumps discontinuously up as you cross the screening threshold \(\bar{x} \) from below. The reason is that, above the screening threshold, securitizers need not worry about diluting the lender’s investigation incentives and can purchase all loans, but below the threshold the lender must retain some loans to maintain incentives to investigate.

Notably, securitization in this model has no real effects. The same borrowers get credit, and the same borrowers are investigated, as in the case without securitization, despite the fact that the purchaser cannot observe soft information about the loans it purchases. For loans for which it is inefficient for the lender to investigate (i.e., \(x \geq \bar{x} \)), the securitizer purchases all of the loans. For

\(^5\)For simplicity, we assume that there is uncertainty about consumer demand, which is given by \(f(x) \), so that the securitizer does not update on whether the lender screened out the sure defaulters based on the number of loans made. Also, because lenders could restrict originations in order to give the appearance of having screened, inference based on loan frequency is unreliable.
loans for which it is efficient for the lender to investigate (i.e., $\bar{x} \leq x < \bar{x}$), the securitizer purchases a fraction of loans for each value of x such that the remaining portfolio loans provide efficient incentives to the lender to investigate. If the purchaser bought more than the equilibrium amount of loans, then the lender would have an incentive to deviate and save on the investigation cost c. This temptation is limited by the $1 - \sigma(x)$ of loans of type x that the lender keeps.

The idea that the screening behavior by lenders below the screening threshold inhibits the securitization of those loans is an application of classic ideas in information economics. Akerlof (1970)’s key insight was that the more private information sellers possess about the quality of the good they are selling, the harder it is to sell the good. That is essentially what is occurring in our model in a moral hazard setup. Sellers (lenders) choose how much soft (and therefore private) information to collect by trading off the costs and benefits of this information. With discrete costs in information collection, their optimal strategy involves a cutoff rule that divides borrowers into those for which additional soft information is collected and those for which it is not. Buyers (securitizers) and sellers have little problem transacting in loans for which the seller has not collected much private information (i.e., those above 620 FICO). But the seller has trouble selling the loans for borrowers for which it has collected additional private information because, if it sold too many, it would not have good incentives to screen.

The rational securitizer model with asymmetric information predicts we will find discontinuities in the lending rate, the default rate, and the securitization rate. Such evidence would suggest that loan purchasers were not completely naive about the moral hazard entailed by securitization, and adjusted loan purchases to mitigate it.

2.2.3. Naive securitizer. A naive securitizer assumes that the lender’s screening behavior will be unchanged by the securitizer’s loan purchases. We model naivete as the assumption that, for each x, no matter what $\sigma(x)$ is chosen by the securitizer the lender will continue to choose the same action it chose in the case without securitization. We derive the following result:

Proposition 4. In the equilibrium of the model with a naive securitizer, the securitizer buys a fraction $\sigma(x) = 1$ of loans with $x > \bar{x}$. The lender rejects borrowers with $x < \bar{x}$ and offers loans to borrowers with $x \geq \bar{x}$ without investigation.
The securitizer’s lower cost of funds implies it will buy all loans on either side of the \(\bar{x} \) cutoff. In this scenario, the lender no longer has an incentive to screen below the \(\bar{x} \) cutoff, and the lending rate, default rate, and securitization rate will all be smooth at \(\bar{x} \). However, if the securitizer were to choose a different naive rule, such as, for instance, buying a constant fraction \(\sigma < 1 \) of all loans, then it is possible the lender’s incentives to screen below \(\bar{x} \) would be maintained if \(\sigma \) were small enough. Thus the naive model of securitizer behavior makes strong predictions about the securitization rate (it is continuous) but is potentially compatible with both continuous and discontinuous lending and default rates.

3. THE SECURITIZER-FIRST MODEL

The securitizer-first model posits that securitizers exogenously use credit cutoff rules in their purchase decisions, and that these rules induce lenders to employ screening cutoff rules. The logic for lenders’ response is straightforward: those loans that are easy to sell need not be carefully screened, since the lender bears the full cost of the screening but only a fraction of the benefit of better loan quality. Ease of securitization thus induces lax screening.

Securitizers in this model are naive in the sense that they act without regard to the impact their purchases have on the screening incentives of lenders, though they are different from the “naive securitizers” analyzed above in the lender-first model because they exogenously choose to adopt a cutoff rule, rather than a simpler rule such as a constant purchase rate. Because securitizers do not generally analyze individual loans, per-loan fixed cost arguments similar to those made for lenders in the lender-first model could not explain the independent use of cutoff rules by securitizers.

We present a stylized version of the securitizer-first model in which securitizers exogenously choose a securitization cutoff rule \(\bar{x}' \) and commit to buying all loans with \(x \geq \bar{x}' \) and no loans with \(x < \bar{x}' \). We assume that lenders’ cost of investigation is \(c = 0 \), and the price of a loan \(T(x) \) on the secondary market is set equal to the expected value of the loan, \(\bar{R}x \). We consider the non-degenerate case in which \(\bar{x}' > \frac{1 - \bar{s}}{\bar{R} - \bar{s}} \), so that the securitizer’s cutoff is higher than the minimum \(x \) the lender would lend to in the absence of the securitizer. We derive the following result:

Proposition 5. In the equilibrium of the securitizer-first model, lenders adopt a lending threshold \(\bar{x} \equiv \frac{1 - \bar{s}}{\bar{R} - \bar{s}} \) and use the securitizer’s cutoff \(\bar{x}' \) as a screening threshold:

1. The lender rejects borrowers with \(x < \frac{1 - \bar{s}}{\bar{R} - \bar{s}} \)
The lender investigates borrowers with \(x \leq x < \bar{x} \) and offers loans to those for which its investigation does not reveal the defaulter signal.

The lender offers loans to borrowers with \(x \geq \bar{x} \) without investigation.

The securitizer-first model predicts discontinuities in the lending, default, and securitization rates at a single FICO score. This pattern of predictions is similar to the lender-first model with a rational securitizer with asymmetric information, though the endogenous screening cutoff \(\bar{x} \) has been replaced by the securitizer’s exogenous cutoff \(\bar{x}' \).

4. INSTITUTIONAL EVIDENCE FOR LENDER CUTOFF RULES

We now present institutional evidence that lenders face fixed costs in information gathering, and that FICO 620 is an important lender screening threshold for reasons unrelated to the probability of securitization.

Mortgage lenders began to incorporate FICO scores into their underwriting procedures in the mid-1990s (Straka, 2000). A FICO score is a summary measure of an individual’s creditworthiness based on their credit history, with higher scores indicating higher creditworthiness. Lenders began to employ cutoff rules that require increased scrutiny of loan applicants below some threshold FICO score, and 620 quickly became a widely adopted threshold. Avery, Bostic, Calem, and Canner (1996, p. 628) describe the use of cutoff rules in mortgage lending thus:

To operate a scoring system for credit underwriting, a lender must select a cutoff score (such as 620) that can be used to distinguish acceptable from unacceptable risks. Regardless of the cutoff score selected, some customers with bad scores will be offered credit because of offsetting factors, and some customers with good scores will be denied credit, also because of offsetting factors.

An important catalyst of the mortgage industry’s adoption of FICO scores was guidance from Fannie Mae and Freddie Mac (the GSEs). Fannie Mae had conducted research into the relationship between FICO scores and mortgage performance showing “that despite the fact that those borrowers who had FICO scores in the lower range (620 or less) represented only a very small percentage of the total universe, they (as a group) accounted for approximately 50% of the eventual defaults...” (Fannie Mae, 1995, p. 4). They recommended that lenders apply increased scrutiny to borrowers with low FICO scores “to determine whether any extenuating circumstances contributed to the lower credit score” (Fannie Mae, 1995, p. 5).
In 1997, Fannie Mae released a letter giving further guidance to lenders by establishing three tiers of FICO scores: for borrowers with FICO scores above 720, default risk is “very low,” and “the underwriter should focus on ascertaining that all significant credit information is included in the credit file”; for those with scores between 660 and 719, default risk is “low,” and the lender similarly need only verify that the credit history is complete; those with scores between 620 and 659 “represent a high degree of default risk,” and “the underwriter must perform a complete assessment of all aspects of the applicant’s credit history”; and those with scores below 620 represent a “very high” risk of default, and “the underwriter must apply good judgment when he or she considers the unique circumstances of each application” and “if there are sufficient compensating factors or extenuating circumstances that offset the higher risk of default associated with credit scores in this range, the underwriter may approve the financing” (Fannie Mae 1997, pp. 8-9). Freddie Mac (1996) established similar guidelines.

Lenders widely adopted the GSEs’ guidance on the use of FICO scores, including the use of the FICO score thresholds they recommended for gathering additional information about borrowers’ creditworthiness. The GSEs were essentially providing a public good by analyzing their data on the relationship between FICO and mortgage performance to determine the optimal cutoff rule. The GSEs were uniquely well-situated to provide this public good given that they had much more data on mortgage performance than any single lender and stood to gain from the industry-wide improvement in underwriting that such research could bring about.

Importantly, the GSEs did not establish 620 as the minimum threshold for loan eligibility. Loans above and below 620 remained eligible for purchase by the GSEs. Fannie Mae (1997, p. 13) stated: “There are several compensating factors that are acceptable for offsetting a FICO Bureau Score below 620. We do not specify a minimum FICO Bureau Score that must be attained before an underwriter can consider approving an applicant for mortgage credit based on the existence of compensating factors.”

What sorts of discrete screening choices do lenders actually make? Perhaps the most important choice lenders make in determining how carefully to screen an applicant is the choice between relying on an automated underwriting system alone, or conducting an additional manual underwriting process. Automated underwriting systems (AUSs) became widely adopted in the mid-1990s (Hutto and Lederman 2003). Most lenders use either the Desktop Underwriter (DU) program,
created by Fannie Mae, or the Loan Prospector (LP) program, created by Freddie Mac. These programs take as inputs information such as FICO score, loan-to-value ratio, and debt-to-income ratio, and quickly compute a recommendation. Fannie Mae’s website advertises that DU allows lenders to process mortgage loan applications “in 15 minutes or less.”

When lenders get an “approve” or “accept” recommendation from their AUS, that is usually the end of the process. When they receive a “refer” or “caution” recommendation, they may then begin the process of manual underwriting (Hutto and Lederman, 2003). Manual underwriting is similar to underwriting as it was done before the advent of AUSs. The lender collects additional information, such as information about non-standard sources of income, cash reserves, and the applicant’s explanation of recent income or payment shocks. The lender may also conduct a face-to-face interview in order to gauge “character risk.” The lender then makes a holistic judgment to determine whether to extend credit. Hutto and Lederman (2003) p. 201-204 writes:

Mortgage bankers often describe underwriting as more of an art than a science. However, with the advent of the statistical systems used by AUSs, the “accept” and “approved” loans are now more science than art. However, those loans ranked “refer” or “caution” do still require the use of the underwriting art since the evaluation of compensating factors is involved. Automated underwriting has allowed underwriters to focus on those loans where mortgage bankers most need their special expertise—that is, in the refer/caution area where underwriting judgment is critical. These loans require manual review of credit and manual evaluation of compensating factors.

Fannie Mae (2007) p. 128 similarly recommends, “If the lender determines that the credit analysis was heavily influenced by credit deficiencies that were the result of an extenuating circumstance... the lender should disregard the credit analysis performed by DU and fully evaluate all relevant risk factors in the loan.”

Manual underwriting is far more costly and time-consuming than automated underwriting. The decision to undertake manual underwriting is discrete, and a clear example of a fixed cost in information gathering. Because DU and LP are designed and distributed by the GSEs, which advocate the use of 620 as a cutoff, it is likely that such cutoffs are coded directly into the AUS decision rules. The effect is that a loan to a borrower with a FICO of 620 would be discontinuously more likely to receive an “approve” recommendation from DU or LP than a similar borrower with a

6 One notable exception is Countrywide, which uses the Countrywide Loan Underwriting Expert System (CLUES). This proprietary software is similar to DU and LP.

7 Unfortunately, we have so far been unable to directly examine the code for DU or LP to confirm this.
FICO of 619. As a result, lenders would be discontinuously more likely to initiate manual underwriting for a borrower with 619. Reliance on AUSs is yet another reason why, even though the fixed cost c may theoretically vary between lenders, lenders coordinate on a few key FICO thresholds. To the extent that those thresholds are built into the software, lenders using the same software employ the same thresholds.

Loans that are “referred” are still eligible for purchase by the GSEs (and private securitizers) so long as the lender judges them to be acceptable through its manual underwriting process. Notably, “reject” is not one of the recommendations given by AUSs—they merely “refer” the loan processor to a more thorough underwriting protocol. Securitizers commonly buy loans that are initially referred and later approved through the manual underwriting process.

5. EMPIRICAL EVIDENCE

We now analyze loan-level data to further distinguish between the lender-first or securitizer-first theories. We find that for several key samples, there are discontinuities in the lending and default rates, but not in the securitization rate. We conclude that the securitizer-first theory is therefore unlikely to be the source of the default rate discontinuities—our view is that the lender-first theory is a more likely explanation.

We then analyze our results in light of the lender-first theory, and conclude that they offer evidence that private mortgage securitizers reined in purchases in order to mitigate the threat of moral hazard in lender screening.

Finally, we revisit an analysis done by KMSV meant to provide evidence in favor of the securitizer-first theory over the lender-first theory. KMSV used variation in state anti-predatory lending laws which they assert affected securitization, and showed that default discontinuities vanished while the laws were in effect. In addition to arguing that this these laws affected default directly and thus provide an invalid test of the theory, we show that the laws did not effect the securitization rate in the manner assumed by KMSV.

\[\text{\footnotesize Certain exceptions apply—for instance, GSEs will not buy loans over the conforming size threshold of $417,000 no matter what the lender determines. In addition to the approve/refer recommendation, DU presents a separate eligible/ineligible output that tells the lender whether the loan violates one of Fannie Mae’s eligibility guidelines. Until 2008, there was no minimum FICO score that would make a loan ineligible. The fact that AUSs can be used to evaluate loans ineligible for purchase by the GSEs, such as jumbo loans, demonstrates that AUSs are not merely meant to aid in securitization.}\]
5.1. **Data.** Our data come from Lender Processing Services Applied Analytics, Inc. (LPS)\(^9\) and provide loan-level data collected through the cooperation of 18 large mortgage servicers, including 9 of the top 10 servicers in the United States. Foote, Gerardi, Goette, and Willen (2009) provide a detailed discussion of the dataset, on which we draw. As of December 2008, the data covered about 60 percent of outstanding mortgages in the United States and contained about 29 million active loans. Key variables in the dataset include borrower FICO scores, detailed loan terms, securitization status, and monthly loan performance data. Originators commonly contract with outside servicers who manage the day-to-day collection of mortgage payments. These servicers are the main agents that borrowers interact with after a loan has been originated. All of the loans in LPS were either originated by one of the 18 servicers, or have had their servicing rights sold to one of these 18 servicers. LPS contains privately securitized loans, GSE-purchased loans, and portfolio loans (loans for which the originator retains rights to the payment stream). While not all of the GSE purchased loans are subsequently securitized, our data only indicate whether they were purchased by the GSEs, not whether they were securitized. For simplicity we will use the term “securitized” to refer to any loans purchased on the secondary-market and will not distinguish between loans purchased and retained by the GSEs and loans that are securitized by the GSEs\(^10\).

We select from LPS first-lien, non-Federal Housing Administration insured, non-Veterans Administration insured, non-buydown, home purchase loans originated between 2003 and 2007 for owner-occupied, single-family residences\(^11\). We also eliminate Ginnie Mae buyout loans, as well as loans bought by the Federal Home Loan Bank or local housing authorities (together these constituted less than 1% of the original sample). Borrowers must have FICO scores non-missing and between 500 and 800 to be included in the sample.

Because of the large influence of the GSEs,\(^12\) we split the sample into a “conforming” sample of loans for amounts below the conforming loan limits set by the GSEs and a jumbo sample of loans that exceed those limits.\(^13\) The GSEs only buy loans that are for amounts below these limits.

\(^9\)These data are sometimes referred to by the name McDash. Lender Processing Services acquired McDash Analytics in November 2008.

\(^10\)The majority of loans purchased by the GSEs—83% in 2007 according to Inside Mortgage Finance (2008)—are in fact securitized.

\(^11\)We chose the 2003 to 2007 period because LPS sample sizes are relatively low before 2003.

\(^12\)The GSEs’ mortgage purchases and mortgage-backed securities issuance accounted for 55% of all mortgage loans by dollar amount originated in the United States in 2007 (Inside Mortgage Finance, 2008).

\(^13\)For the continental United States, the conforming loan limits for single-family homes were $322,700 in 2003, $333,700 in 2004, $359,600 in 2005, and $417,000 in 2006 and 2007.
and that meet additional eligibility criteria, such as limits on debt-to-income ratios. While “non-jumbo” would technically be a more accurate term, for simplicity we use the term “conforming” for all loans that are for amounts below the GSEs’ conforming loan limits, including loans that fail to meet these other eligibility criteria. In the conforming market during our sample period the GSEs account for 76% of all loan purchases. In contrast, virtually all loan purchases in the jumbo market are done by private securitizers. Analyzing the jumbo market separately provides an opportunity to see whether the rules used in screening mortgage borrowers, and their effect on securitization, are different in the absence of the GSEs.

In addition to the conforming and jumbo samples, we examine a sample of low documentation loans. One feature of the recent mortgage boom was the proliferation of so-called low documentation or “low doc” loans, which unlike standard loans (“full doc” loans) required limited or no documentation of borrowers’ income and assets. In their exposition of the securitizer-first theory, KMSV restrict their main analysis to low documentation loans because they argue that, due to these loans’ lack of hard information, soft information plays a bigger role in screening. Though we view selection into documentation status as part of lender screening behavior and thus an endogenous outcome, we include a low documentation sample because soft information may indeed be more important for these loans.

We define loan default as a binary variable equal to 1 if payment was delinquent by 61 days or more at any time in the first 18 months after origination. We define a loan’s securitization status using its status at 6 months after origination. Many loans spend their first few months in portfolio before being sold, but the vast majority of loan sales occur within the first 6 months. From 6 months onward, the proportion securitized is stable, as can be seen in Figure 5. Loans with missing securitization status at 6 months are dropped from the sample.

Tables 1, 2, and 3 provide sample sizes and summary statistics for our data. Note that while the conforming and jumbo samples are mutually exclusive, all loans in the low doc sample appear also in either the conforming or the jumbo sample. Among conforming loans, 90% of the sample

\footnote{Our definition of “low documentation” includes so-called “no documentation” loans.}

\footnote{Figure 6 plots the percentage of loans in our conforming sample that are classified as low documentation loans. There is a dramatic fall in the fraction of low documentation loans below 620, which is consistent with our view that lenders screen borrowers more carefully below 620.}

\footnote{Results are similar if we use the default definition employed by KMSV, which is a binary variable equal to 1 if payment was delinquent by 61 days or more at any time between the 10th and 15th month after origination, and if we restrict our sample to the 2001-06 origination window used by KMSV.}
is securitized through either the GSEs or private securitizers. In the jumbo sample only 72% are securitized; of these, nearly all are privately securitized. Approximately 5% of loans in all samples default within the first 18 months, though this number is higher for borrowers in the neighborhood of 620.

5.2. The use of 620 FICO score as a screening threshold. According to both theories, lenders gather more information about borrowers below the 620 FICO score threshold and are therefore better able to screen out bad credit risks just below 620 than just above 620. The models predict that the lending rate, as measured by the density of loans in our sample, and the default rate should jump at the 620 threshold. We investigate whether this is true using regression discontinuity (RD) techniques. The goal here is not to distinguish between the two theories, but simply to establish that there is a screening cutoff at 620.

5.2.1. Density of loans. To estimate the discontinuity in the density of loans at 620, we use two approaches. The first is to collapse the data into the frequency of loans at each FICO score, yielding a dataset with one observation per FICO score, and then estimate a global polynomial regression:

\[
\log(FREQ_{FICO_k}) = \alpha_0 + \alpha_1 \mathbb{1}_{\{FICO_k \geq 620\}} + f(FICO_k) \mathbb{1}_{\{FICO_k \geq 620\}} + g(FICO_k) \mathbb{1}_{\{FICO_k \geq 620\}} + \epsilon_{FICO_k}
\]

where \(k\) indexes (integer) FICO scores, \(\mathbb{1}\) is the indicator function, and both \(f(FICO_k)\) and \(g(FICO_k)\) are 6th-order polynomials in \(FICO\). The coefficient \(\alpha_1\) measures the size of the discontinuity in the number of loans in our sample at 620 in log points. This approach is straightforward, but the OLS standard errors are incorrect and are likely overestimates due to the application of OLS on collapsed data.

The second approach follows McCrary (2008), which develops a formal test of the continuity of the density function of the running variable in RD analyses that allows for proper inference. The method entails first estimating a histogram of the data and then estimating the regression function on either side of the 620 cutoff using a weighted local linear regression of the (normalized) counts in the bins on the mid-points of the bins. This method has the advantage of a standard error estimator that is consistent under reasonable assumptions.

\[\text{We use a flag provided in the LPS dataset to identify which loans are jumbo loans. In theory the GSEs should not buy any jumbo loans; the 1.9\% of our jumbo sample that was purchased by the GSEs are either miscoded or the GSEs do not perfectly comply with the conforming loan limits.}\]
Columns 1 and 2 of Table 4 report the results for the three samples. Both specifications yield significant positive jumps in both samples. Interpreting the McCrary estimates, for the conforming sample there is a 43 log point jump in loans at the 620 threshold. Figures 7, 8, 9 plot the FICO histograms for the conforming, jumbo, and low doc samples, respectively. Discontinuities in the density functions at 620 are visually apparent.

Because the distribution of FICO score is continuous in the population of potential borrowers (KMSV, p. 3), these discontinuities in the FICO distribution of borrowers show that the lending rate jumps at 620—a greater fraction of potential borrowers are given a loan just above 620 than just below.

5.2.2. Default rate. To examine discontinuities in the default rate, we perform a standard RD analysis. Our first specification estimates 6th-order polynomials on either side of the cutoff using all of the data:

\[
Y_i = \beta_0 + \beta_1 \mathbb{1}_{\{FICO_i \geq 620\}} + f(FICO_i) + \mathbb{1}_{\{FICO_i \geq 620\}} * g(FICO_i) + \lambda_y + \epsilon_i
\]

where \(i\) indexes individual loans, \(Y_i\) indicates whether loan \(i\) defaulted, \(\lambda_y\) are year fixed effects, and both \(f(FICO_i)\) and \(g(FICO_i)\) are 6th-order polynomials in \(FICO\).

For our second specification we use a local linear regression. We restrict the sample to a 10 FICO score point band on either side of the threshold and fit a line on either side. This is equivalent to the above specification where \(f(\cdot)\) and \(g(\cdot)\) are both first-order polynomials, performed on a sample restricted to the neighborhood \([610, 629]\).

Columns 3 and 4 of Table 4 report the results of these specifications for the three samples. We estimate a significant discontinuity in the default rate of the conforming sample of 2.1 percentage points using the polynomial regression and 1.4 percentage points using the local linear regression on a base level default frequency of about 14%. Results for the jumbo sample are similar or larger in magnitude, but the smaller sample size renders them insignificant. We estimate a discontinuity of 2.8 percentage points using the polynomial regression (p-value of 0.12) and 1.4 percentage points using the local linear regression (p-value of 0.39), on a base default rate of approximately 19 percent. Discontinuities for the low doc sample are largest of all, with an estimate of 5.9

Discontinuities are also apparent at several other FICO scores, suggesting that the use of screening thresholds is not limited to 620. The discontinuity in density at 620, however, is the largest in log-point terms.

Results are similar using alternative bandwidths.
percentage points for the polynomial regression on a base rate of 13.5. Figures 10, 11, and 12 plot default rates by FICO score for the conforming, jumbo, and low doc samples, respectively. The jumps in default rates at 620 are visually apparent.

5.2.3. Discussion. The above provides robust evidence for a screening cutoff at the FICO score of 620. The discontinuity in the default rate demonstrates that lender screening matters for loan performance. The fact that the cutoff rule exists in both the conforming and jumbo markets suggest that lenders’ use of cutoff rules in screening is not an artifact of the quasi-regulatory influence of the GSEs in the conforming market.

5.3. Securitization rate discontinuities. We now test whether securitizers purchased fewer loans below the 620 threshold. This test has the power to distinguish between the lender-first and securitizer-first theories: if there is no discontinuity in securitization, then that would be evidence that a securitizer rule of thumb is not the cause of the screening discontinuity at 620.

We begin by clarifying what the relevant probability of securitization is, as a conceptual matter. In KMSV, an unusual aspect of the empirical strategy is that they use a fuzzy regression discontinuity design, where securitization is the treatment, using a dataset with only treated (i.e., securitized) units. One difficulty this causes is that they are unable to estimate a first stage to confirm whether there really is a discontinuity in the probability that low documentation loans are securitized at the 620 threshold. KMSV instead show that the number of loans in their dataset of securitized low documentation loans jumps at 620. Because the FICO distribution of potential borrowers is continuous at 620, they argue that this shows that the “unconditional probability” of securitization (i.e., the probability that a potential borrower is given a securitized loan rather than either not being given a loan or being given a portfolio loan) jumps at 620.

However, the probability relevant for testing the hypothesis that securitization has diluted the incentive of lenders to screen borrowers is the probability that a loan is securitized, not the probability that a potential borrower is given a securitized loan. If a lender has a very high probability of being able to sell a loan, say to a naive investor unaware of the potential for moral hazard, then we might expect the lender’s incentives to screen borrowers to be attenuated. If instead there is a large chance that the lender will be stuck with the loans it makes, then the moral hazard problem is less severe. The unconditional probability in which KMSV demonstrate a jump conflates two different probabilities: (1) the probability that potential borrowers are given a loan, which we will
refer to as the lending rate; and (2) the probability that loans are securitized, which we call the securitization rate. More formally, let $L_i \in \{0, 1\}$ denote whether potential borrower i is given a loan and let $S_i \in \{0, 1, 0\}$ denote whether borrower i’s loan is securitized (with $S_i = 0$ if borrower i is not given a loan). KMSV’s unconditional probability is then:

$$Pr(S_i = 1) = Pr(L_i = 1) \times Pr(S_i = 1 | L_i = 1)$$

The first factor on the RHS of this equation is the lending rate; the second factor is the securitization rate. KMSV show that the unconditional probability of securitization jumps at 620, but they cannot tell whether this is because the lending rate jumps or because the securitization rate jumps.

Our dataset, which is also used by KMSV in some of their robustness checks, contains both securitized and portfolio loans, enabling us to decompose the jump in the unconditional probability into jumps in the lending rate and securitization rate.

We estimate the discontinuity in securitization rate using the same polynomial and local linear regression approaches we used for the default rate above. Columns 5 and 6 of Table 4 present point estimates of the discontinuities in the securitization rate at 620. We estimate significant jumps of 4.7 and 5.8 percentage points for the jumbo sample, but much smaller jumps of 0.4 and 0.6 percentage points for the conforming sample, the latter of which is marginally significant. For the low doc sample the point estimates are actually negative: -1.4 and -0.7 percentage points, the former of which is marginally significant. Figures 13, 14, and 15 reveal a visually apparent discontinuity for the jumbo sample, but not for the conforming nor low doc samples.

We thus find evidence for a discontinuity in the securitization rate at 620 for the jumbo sample, but not for the conforming sample nor the low doc sample.

5.3.1. Discussion. There is robust evidence that 620 is used as a screening threshold: we find lending and default discontinuities at 620 in all three of our samples. However, only the jumbo sample displays a discontinuity in the securitization rate at 620—the conforming and low doc samples have a smooth securitization rate across the threshold. Given this evidence, we find that

20 Figure 14 reveals that the securitization rate right at 620 in the conforming sample is an outlier. Furthermore, the FICO histograms in Figures 13 and 15 reveal that bunching occurs at 620. The cause of this phenomenon is unclear, and our polynomial specifications limit its influence on our discontinuity estimates. Because of this outlier, the local linear estimate of the discontinuity for the conforming sample is sensitive to bandwidth—for a bandwidth of 1, it is a significant (but still modest) 2 percentage point jump. With data at 620 dropped from the sample, the local linear estimate using a bandwidth of 10 is an insignificant -0.3 percentage point change.

21
the securitizer-first theory is an unlikely explanation for the screening discontinuities found in the data. The lender-first theory provides a more plausible explanation.

Our data thus show that in the jumbo mortgage market without the GSEs, loan purchasers left a greater fraction of loans on originators’ books when those loans were below their screening threshold. This provides evidence that private securitizers, at least, took steps to mitigate the moral hazard problem posed by loan purchases. The pattern of evidence is consistent with a rational securitizer with asymmetric information.

In contrast, in the conforming market, in which the GSEs buy the majority of loans, there is no jump in securitization rates at 620. One possible explanation for the difference is that the GSEs were naive relative to private securitizers. The GSEs were less aware than the private securitizers of the moral hazard threat posed by securitization, and took fewer steps to maintain lenders’ incentives to screen. Though this is possible, the high securitization rate in the conforming market suggests that lenders would respond to such a securitizer by eliminating screening entirely, as predicted in the naive securitizer version of the lender-first model when the securitizers purchases a fraction of loans close to 1.

Another explanation, which we find more plausible, is that the GSEs had greater access than private securitizers to alternative instruments to police lender moral hazard—in other words, GSEs fit the rational securitizer with symmetric information model.

Institutional evidence reveals that both Fannie Mae and Freddie Mac have used a variety of instruments to prevent lenders from shirking on screening. Prior to 1982, Fannie Mae and Freddie Mac each “re-underwrited” every loan they purchased by employing staff underwriters to review every single loan file (Straka, 2000, p. 209)—a procedure which, to our knowledge, has never been used by private secondary market purchasers. Since 1982, they each rely on random sampling of loans for “postfunding review” of the loan file. Furthermore, the GSEs can terminate their relationship with an originator if they observe any abnormal increase in default rates of the originator’s loans or evidence of failure to comply with the GSEs’ underwriting guidelines.21 Both due to the GSEs’ huge market share and their permanence in the market, a lender that shirks on screening loans that it sells to the GSEs faces the loss of a huge source of lending capital were the GSEs to cease purchasing its loans. This is not just a theoretical possibility: several originators have been

21Freddie Mac (2001), Chapter 5, “Disqualification or Suspension of a Seller/Servicer” details the process by which Freddie Mac can terminate its relationship with an originator.
terminated by the GSEs.22 In contrast, the threat of termination by a smaller private secondary market purchaser is much less significant to an originator.

5.4. Using variation from anti-predatory lending laws. KMSV (pp. 21 - 23) explicitly consider our central hypothesis—that the 620 FICO score threshold was used by lenders for reasons unrelated to securitization—and attempt to reject it by using variation induced by the passage of state anti-predatory lending laws in Georgia and New Jersey in 2002 and 2003, respectively. They argue that the laws made it harder for lenders to securitize mortgages but kept “everything else equal” (p. 21). They argue that if 620 represents a threshold used by lenders independent of securitization, then the passage of these laws should have no effect on the discontinuities at 620. They then show that the discontinuity in the number of loans at 620 gets smaller, and that similarly the jump in default rates at 620 disappears, in Georgia and New Jersey during the period in which these laws were in effect.

We have two objections, one theoretical and one empirical. The theoretical objection is that these laws did not only change the ease of securitization. The goal of the New Jersey Home Ownership Security Act of 2002 (NJHOSA)23 for example, was to prevent abusive lending practices. In addition to enabling borrowers to assert any claims against the purchaser of their mortgage that they could have asserted against the originating lender (i.e., creating “assignee liability”), it restricted a range of lending practices for all loans, including certain kinds of lender-financed insurance, loan “flipping”, and late payment fees. Furthermore, for a class of “high-cost” loans, the Act limited the rate at which scheduled payments could increase on ARMs, negative amortization, interest rate increases upon default, and the financing of points and fees. The Georgia Fair Lending Act (GFLA)24 contained similar provisions targeting a range of abusive lending practices. One of the express purposes of these provisions was to reduce default.

Therefore there is no reason to expect that these restrictions changed the lending rate and default rate discontinuities at 620 only through their effect on securitization. The laws were designed to have an effect on the level of defaults independently of their consequences for securitization, and

23N.J.S.A. 46:10B-22, \textit{et seq.}

24O.C.G.A. § 7-6A-1, \textit{et seq.}
there is no reason to expect their impact on default to be the same just above the 620 threshold (where defaults rates are higher and the provisions of the law may bind more) as it is below. Given the content of the laws, testing whether the default rate discontinuity changes when the laws were in force is not informative about the nature of the discontinuity and whether it can be ascribed to securitization.

Empirically, we now check whether the laws in fact had an effect on securitization—a test that KMSV did not perform as they restrict their analysis to their main sample of only securitized loans. KMSV’s analysis of these laws is predicated on their assumption that they reduced securitization. However, we find that they did not.

Both laws were amended shortly after they were passed to weaken their restrictions. For example, the amendment to the GFLA limited the relief that could be granted against an assignee, and the amendment to the NJHOSA provided that borrowers could seek relief under the act only in their individual capacity and not as part of a class action. We define the periods of each law being “in effect” as between when they initial came into effect and the date their amendment came into effect. These are from the start of October 2002 to the end of February 2003 for the GFLA, and between the start of December 2003 and the end of May 2004 for the NJHOSA.

We use a difference-in-differences (DD) strategy to estimate the effect of each law on securitization. In order to make the requisite parallel trends assumptions more plausible, we use as comparison groups for each state the states that border them25 and restrict the dataset to the period from six months before each law was passed to six months after it was amended. To maximize sample size, we pool conforming and jumbo loans. For Georgia, with the sample restricted to contain loans originated in Georgia and its comparison group during the appropriate time window, we estimate:

(4) \[Y_i = \delta_0 + \delta_1 GA_i + \delta_2 LawPeriod_i + \delta_3 Law_i + \epsilon_i \]

where \(Y_i \) is a securitization dummy, \(GA_i \) is an indicator for whether loan \(i \) was originated in Georgia, \(LawPeriod_i \) is an indicator for whether the loan was originated during the period in which the GFLA was in effect unamended, and \(Law_i \) is the interaction of \(GA_i \) and \(LawPeriod_i \). We thus pool

25Specifically, NY, PA, and DE for NJ; and AL, NC, SC, TN, and FL for GA.
the pre-law and post-amendment periods together as the control period. We estimate the analogous specification for New Jersey separately.\footnote{Unfortunately, LPS sample sizes are relatively small in the year 2003 and before, and the coverage is not as nationally representative as in later years.}

Table\footnote{Analogous DD regressions using default as the dependent variable estimate no effect for either state (not reported). It appears likely that these laws had little impact on mortgage lending in either state.} shows results for the two law changes. For Georgia, the DD estimate of the effect of the law is a significant 2.7 percentage point increase in securitization. For New Jersey, the effect is close to zero and insignificant. Our data thus show that the laws did not have the effect on the securitization rate that KMSV assumed.\footnote{Analogous DD regressions using default as the dependent variable estimate no effect for either state (not reported). It appears likely that these laws had little impact on mortgage lending in either state.} Thus, for both theoretical and empirical reasons, KMSV’s analysis of anti-predatory lending laws is uninformative about the nature of the discontinuity at 620, and cannot be used to differentiate between the securitizer-first and lender-first models.

6. Conclusion

In this paper we compared two explanations for cutoff rules in mortgage screening: the lender first-theory, in which cutoffs are endogenously generated by per-applicant fixed costs in information gathering, and the securitizer-first theory, in which cutoffs are a response to exogenous securitizer purchase rules. We presented institutional evidence that, as predicted by the lender-first theory, lenders make discrete choices about screening intensity at the FICO score of 620 for reasons unrelated to the ease of securitization. We then used a loan-level dataset to show that in the conforming mortgage market, as well as in a low documentation sample, there are screening cutoffs at 620 but no securitization discontinuity—a pattern of evidence consistent with the lender-first theory, but not the securitizer-first theory. We further analyzed data from anti-predatory lending laws, showing that they do not offer evidence in favor of the securitizer first theory.

We also used the lender-first theory to learn about the behavior of mortgage securitizers in the recent credit crisis. We found that private mortgage securitizers adjusted their loan purchases around the lender screening threshold in order to maintain lender incentives to screen. In contrast, we found that the GSEs did not. While this is potentially consistent with GSE naivete about moral hazard, it is also consistent with the GSEs having greater ability than private securitizers to police moral hazard through alternate means.
Though our paper finds that securitizers were more rational with regards to moral hazard than previous research has judged, the extent to which securitization contributed to the subprime mortgage crisis is still an open and pressing research question.

REFERENCES

APPENDIX A

Proof of Proposition 1. For each loan applicant type \(x \), the lender thus does one of three things: deny the applications, accept the applications without investigation, or investigate each applicant and, if no default signal is observed, accept the application. Denote this choice as \(a \in \{D, A, I\} \).

The per-applicant payoff to the lender of each of these actions for each value of \(x \) is given by:

\[
V(x|a) = \begin{cases}
0 & \text{if } a = D \\
\bar{R}x - 1 & \text{if } a = A \\
\left(1 - (1 - x)s\right)\left\{\frac{x}{1-(1-x)s}\bar{R} - 1\right\} - c & \text{if } a = I
\end{cases}
\]

The lender’s optimization problem is thus to choose an action \(a(x) \) for each value of \(x \) that solves:

\[
\max_{a \in \{D, A, I\}} \{V(x|a)\}
\]

Accepting is preferred to investigating if and only if \(\bar{R}x - 1 \geq \bar{R}x - (1 - (1 - x)s) - c \iff x \geq 1 - \frac{c}{s} = \bar{x} \). Accepting is preferred to rejecting if and only if \(\bar{R}x - 1 \geq 0 \iff x \geq \frac{1}{\bar{R}} \). Investigating is preferred to rejecting if and only if \(\bar{R}x - (1 - (1 - x)s) - c \geq 0 \iff x \geq \frac{1 - \frac{s + c}{\bar{R} - s}}{\bar{R} - s} = \bar{x} \). Hence, the proposition holds if and only if the following are true:

1. \(\bar{x} > x \), or \(1 - \frac{c}{s} > \frac{1 - \frac{s + c}{\bar{R} - s}}{\bar{R} - s} \). Rearranging this inequality yields \(c < \frac{(\bar{R} - 1)s}{\bar{R}} \), which we assumed was true.
2. \(\bar{x} < 1 \), or \(1 - \frac{c}{s} < 1 \), which is true since \(c > 0 \) and \(s > 0 \).
3. \(\bar{x} > 0 \), or \(\frac{1 - \frac{s + c}{\bar{R} - s}}{\bar{R} - s} > 0 \), which is true since \(\bar{R} - s > 0 \) and \(s - c < 1 \).

□

Proof of Proposition 2. We set up the securitizer’s problem using the standard contract-theoretic approach: for each \(x \), the securitizer maximizes the total surplus in the contract. The per-applicant
surplus for each \(x \), for fixed \(\sigma(x) \) and \(a(x) \), is given by

\[
S(x, \sigma(x), a(x)) = \begin{cases} 0 & \text{if } a(x) = D \\ \sigma(x)\delta + 1 - \sigma(x)\bar{R}x - 1 & \text{if } a(x) = A \\ 1 - (1 - x)s[\sigma(x)\delta + 1 - \sigma(x)] - c & \text{if } a(x) = I \\ \end{cases}
\]

Because \(a(x) \) is contractible, the securitizer need not worry about satisfying an incentive compatibility constraint for the lender. The securitizer’s problem is to find functions \(\sigma(x) \) and \(a(x) \) that solve, for each \(x \):

\[
\max_{\sigma(x) \in [0,1], a(x)} \left\{ S(x, \sigma(x), a(x)) \right\}
\]

Note that the only difference between the surplus function \(S(x, \sigma(x), a(x)) \), given by (7), and the payoff function of the lender in the baseline model \(V(x|\sigma) \), given by (5), is that the surplus contains the weighted average of the securitizer’s and the lender’s discount factor. By substituting \(1 - \varepsilon \) for \(\delta \), we can rewrite the surplus in terms of the baseline payoff function and an additional \(\varepsilon \sigma(x)\bar{R}x \) term:

\[
S(x, \sigma(x), a(x)) = \begin{cases} V(x|a(x)) & \text{if } a(x) = D \\ V(x|a(x)) + \varepsilon \sigma(x)\bar{R}x & \text{if } a(x) \in \{A, I\} \\ \end{cases}
\]

Note that \(S(x, \sigma(x), a(x)) \) is additively separable in \(\sigma(x) \) and \(a(x) \). This implies it can be maximized by first choosing \(a(x) \) to maximize \(V(x|a(x)) \), then choosing \(\sigma(x) \) to maximize \(\varepsilon \sigma(x)\bar{R}x \). The \(a(x) \) that solved the lender’s problem in the case without securitization now maximizes \(V(x|a(x)) \) in the present case, and \(\varepsilon \sigma(x)\bar{R}x \) is maximized by \(\sigma(x) = 1 \). Lastly, \(T(x) \) and \(T \) simply allocate the surplus between lender and securitizer.

Proof of Proposition 3. The securitizer’s problem is similar to the one in Proposition 2 with the important difference that the choice of \(a(x) \) is now subject to the incentive compatibility constraint of the lender. For each \(x \), the securitizer maximizes the total surplus in the contract. The per-applicant surplus for each \(x \), for fixed \(\sigma(x) \) and action by the lender \(a(x) \), is given by

\[
S(x, \sigma(x)|a(x)) = \begin{cases} 0 & \text{if } a(x) = D \\ \sigma(x)\delta + 1 - \sigma(x)\bar{R}x - 1 & \text{if } a(x) = A \\ 1 - (1 - x)s[\sigma(x)\delta + 1 - \sigma(x)] - c & \text{if } a(x) = I \\ \end{cases}
\]

For fixed \(\sigma(x) \) and \(T(x) \), the lender receives the following per-applicant payoff for each \(x \) as a function of its choice \(a \):

\[
V(x, \sigma(x), T(x)|a) = \begin{cases} 0 & \text{if } a = D \\ \sigma(x)T(x) + (1 - \sigma(x))\bar{R}x - 1 & \text{if } a = A \\ 1 - (1 - x)s[\sigma(x)T(x) + (1 - \sigma(x))] - c & \text{if } a = I \\ \end{cases}
\]

Faced with a \(\sigma(x) \) and \(T(x) \), the lender will choose \(a(x) \), which we assume is non-contractible, to maximize \(V(x, \sigma(x), T(x)|a) \) for each \(x \).

The securitizer’s problem is thus to find functions \(\sigma(x) \), \(T(x) \), and \(a(x) \) that solve, for each \(x \):

\[
\max_{\sigma(x) \in [0,1], T(x), a(x)} \left\{ S(x, \sigma(x)|a(x)) \right\}
\]
subject to the incentive compatibility constraints,

\[\forall x, a(x) \in \arg\max_a V(x, \sigma(x), T(x)|a) \tag{13} \]

As before, the only difference between the surplus function \(S(x, \sigma(x)|a(x)) \), given by (7), and the payoff function of the lender in the baseline model, \(V(x|a) \) given by (5), is that the surplus contains the weighted average of the securitizer’s and the lender’s discount factor. By substituting in \(1 - \varepsilon \) for \(\delta \), we rewrite the surplus in terms of the baseline payoff function and an additional \(\varepsilon \sigma(x) \bar{R}x \) term:

\[S(x, \sigma(x)|a(x)) = \begin{cases} V(x|a(x)) & \text{if } a(x) = D \\ V(x|a(x)) + \varepsilon \sigma(x) \bar{R}x & \text{if } a(x) \in \{A, I\} \end{cases} \tag{14} \]

Once again, additive separability allows us to find the solution to (12) in two steps: first, find the set of contracts that maximize the objective function \(V(x|a(x)) \) subject to the incentive compatibility constraints, and second, among that set of contracts, choose the one with the largest \(\sigma(x) \) for each \(x \) (since \(\varepsilon \bar{R}x > 0 \), i.e., there are (small) gains to trade between the lender and securitizer).

Rewriting the problem for the first step, we have:

\[\max_{\sigma(x), T(x), a(x)} \left\{ V(x|a(x)) \right\} \tag{15} \]

subject to the incentive compatibility constraints, (13).

The maximand in (15) is the same as the maximand in the lender’s unconstrained maximization problem in (6). We now show that the same unconstrained maximum can be achieved in the securitizer’s constrained problem. Recall the lender’s solution to (6), \(a^*(x) \):

\[a^*(x) = \begin{cases} D & \text{if } x < \bar{x} \\ I & \text{if } \bar{x} \leq x < \bar{x} \\ A & \text{if } x \geq \bar{x} \end{cases} \tag{16} \]

For each \(x \), we look for the largest \(\sigma(x) \) for which there exists a \(T(x) \) such that \(a^*(x) \) satisfies the lender’s incentive compatibility constraints under \(\sigma(x) \) and \(T(x) \).

For \(x \geq \bar{x} \), we will show by specific example of \(T(x) \) that \(\sigma^*(x) = 1 \) and \(a^*(x) = A \) can be implemented. Let \(T(x) = \bar{R}x \) (the expected value of the loan) and \(\sigma^*(x) = 1 \). The lender prefers \(a = A \) at these values of \(x \) if and only if \(\bar{R}x - 1 \geq 0 \) and \(\bar{R}x - 1 \geq (\bar{R}x - 1)(1 - (1 - x)s) - c \). The former condition is just the condition that the lender prefers \(a = A \) to \(a = I \) in the no securitization case. The latter condition is true since we showed in the proof of Proposition 1 that the lender prefers \(a = A \) to \(a = I \) even when he gets a larger expected payment per loan under \(a = I \).

For \(\bar{x} \leq x < \bar{x} \), we will derive an upper bound on \(\sigma(x) \) such that \(a^*(x) = I \) can be implemented. For the lender to prefer \(a = I \) to \(a = D \), we must have \(V(x, \sigma(x), T(x)|I) \geq V(x, \sigma(x), T(x)|D) \), which is true if and only if \((1 - (1 - x)s)(\sigma(x)T(x) + (1 - \sigma(x))\frac{x}{1 - (1 - x)s}\bar{R}x - 1) - c \geq 0 \), or equivalently,

\[T(x) \geq \frac{1 - (1 - x)s + c - (1 - \sigma(x))\bar{R}x}{\sigma(x)(1 - (1 - x)s)} \equiv \bar{T}(x) \tag{17} \]

There is a lower bound on \(T(x) \) because if the securitizer does not pay enough for the loans it buys, the lender will not be willing to make the loans.

For the lender to prefer \(a = I \) to \(a = A \), we must have \(V(x, \sigma(x), T(x)|I) \geq V(x, \sigma(x), T(x)|A) \), which is true if and only if \((1 - (1 - x)s)(\sigma(x)T(x) + (1 - \sigma(x))\frac{x}{1 - (1 - x)s}\bar{R}x - 1) - c \geq \sigma(x)T(x) + \)
For any σ of (18), which then reduce to

$$T(x) \leq \frac{(1-x)s - c}{\sigma(x)(1-x)s} \equiv \overline{T}(x)$$

There is an upper bound on $T(x)$ because if the securitizer pays too much for the loans it buys, the lender would prefer not to investigate and screen out borrowers and instead would prefer to lend to all of them.

A function $T(x)$ can implement $a^*(x)$ and $\sigma(x)$ if and only if $T(x) \leq T(x) \leq \overline{T}(x)$. Therefore, for each x, we will maximize $\sigma(x)$ subject to $T(x) \leq \overline{T}(x)$. Rearranging $T(x) \leq \overline{T}(x)$ gives the upper bound $\sigma(x) \leq \frac{Rs(1-x)x - c}{Rs(1-x)x}$, so the optimal $\sigma(x)$ is given by:

$$\sigma^*(x) = \frac{Rs(1-x)x - c}{Rs(1-x)x}$$

One can check that $0 \leq \frac{Rs(1-x)x - c}{Rs(1-x)x} < 1$ for $x \in [\underline{x}, \overline{x})$.

To find the payment function that supports this equilibrium, we substitute $\sigma^*(x)$ into (17) and (18), which then reduce to $T(x) = \overline{T}(x) = \frac{Rs(1-x)x - c}{Rs(1-x)x}$. Hence, in this region of x, the equilibrium payment function is unique.

Finally, for $x < \underline{x}$, we must have that the lender prefers $a = D$ to $a \in \{A, I\}$. For these values of x, no loans are made, so the securitization rate has no effect on the surplus. We can thus set $\sigma^*(x) = 0$ and $T^*(x) = 0$. Since the lender denies the applicants, it follows immediately that the lender’s incentive compatibility constraints are satisfied with $\sigma^*(x) = 0$ and $T^*(x) = 0$. □

Proof of Proposition 4 The naive securitizer ignores the lender’s incentive compatibility constraint and assumes that $a(x)$ is fixed at the solution to the case without securitization, given by (16). The securitizer maximizes what it perceives to be total surplus:

$$S(x, \sigma(x)) = \begin{cases} 0 & \text{if } x < \underline{x} \\ (\sigma(x)\delta + 1 - \sigma(x))\overline{Rx} - 1 & \text{if } \underline{x} \leq x < \overline{x} \\ (1 - (1-x)s)(\sigma(x)\delta + 1 - \sigma(x))\frac{x}{1-(1-x)s} - c & \text{if } x \geq \overline{x} \end{cases}$$

Because $\delta > 1$, $S(x, \sigma(x))$ is maximized by $\sigma(x) = 1$ for $x \geq \underline{x}$.

For $x < \underline{x}$, the lender’s problem is identical to the problem in Proposition 1 and the lender chooses $a = D$. For $x \geq \underline{x}$, however, the problem is now:

$$V(x|a) = \begin{cases} 0 & \text{if } a = D \\ T(x) - 1 & \text{if } a = A \\ (1 - (1-x)s)T(x) - 1 - c & \text{if } a = I \end{cases}$$

For any $T(x)$, $a = A$ dominates $a = I$ because $1 - (1-x)s < 1$ and $c > 0$. $T(x) > 1$ is chosen to satisfy the lender’s participation constraint and T divides the surplus.

Proof of Proposition 5 Given securitizer’s exogenous selection of \overline{x}' as a cutoff rule we need only analyze the lender’s problem. Given $c = 0$, in the region $x < \overline{x}'$ the lender’s value function is:
\[
V(x|a) = \begin{cases}
0 & \text{if } a = D \\
\bar{R}x - 1 & \text{if } a = A \\
\frac{\bar{R}x}{1 - (1 - x)s} - 1 & \text{if } a = I
\end{cases}
\]

Because \(1 - (1 - x)s < 1\), \(I\) dominates \(A\) and the lender investigates for loans with \(\bar{x} \leq x < \tilde{x}'\). Below \(\bar{x}\), \(D\) dominates \(I\).

For \(\tilde{x} \geq \tilde{x}'\) the lender receives \(T(x) - 1\) for every loan offered. Therefore for \(T(x) = \bar{R}x\) the lender wishes only to maximize the number of loans originated, which it does by choosing \(A\). \(\square\)
APPENDIX B

Figure 1. Discontinuities in the density of mortgages by credit score

Figure 2. Discontinuity in the density of loans
Figure 3. Discontinuity in the default rate of loans

Figure 4. Discontinuity in the securitization rate of loans
Figure 6. Proportion low documentation by FICO. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.

Figure 7. FICO histogram for conforming loan sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects. Vertical line is at 620 FICO.
FIGURE 8. FICO histogram for jumbo loan sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects. Vertical line is at 620 FICO.

FIGURE 9. FICO histogram for low documentation loans 2001-2006. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.
Figure 10. Default by FICO for conforming loan sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.

Figure 11. Default by FICO for jumbo loan sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.
FIGURE 12. Default by FICO for low documentation loans 2001 - 2006. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.

FIGURE 13. Securitization by FICO for conforming sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.
Figure 14. Securitization by FICO for jumbo sample. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.

Figure 15. Securitization by FICO for low documentation loans 2001 - 2006. Fitted curves from 6th-order polynomial regression on FICO interval [500,800] without year fixed effects.
Table 1. Sample Sizes

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conforming</td>
<td>3,843,810</td>
<td>150,965</td>
<td>576,478</td>
<td>1,091,678</td>
<td>1,097,665</td>
<td>927,024</td>
</tr>
<tr>
<td>Jumbo</td>
<td>589,352</td>
<td>17,846</td>
<td>111,093</td>
<td>217,406</td>
<td>139,053</td>
<td>103,154</td>
</tr>
<tr>
<td>Low Doc</td>
<td>851,683</td>
<td>50,093</td>
<td>180,245</td>
<td>242,966</td>
<td>219,214</td>
<td>159,165</td>
</tr>
</tbody>
</table>

Table 2. Summary Statistics: Conforming and Jumbo Samples

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>N</th>
<th>Mean</th>
<th>S.D.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE Securitized</td>
<td>.684</td>
<td>.465</td>
<td>3,843,810</td>
<td>.019</td>
<td>.136</td>
<td>589,352</td>
</tr>
<tr>
<td>Private Securitized</td>
<td>.216</td>
<td>.411</td>
<td>3,843,810</td>
<td>.700</td>
<td>.458</td>
<td>589,352</td>
</tr>
<tr>
<td>Portfolio</td>
<td>.101</td>
<td>.301</td>
<td>3,843,810</td>
<td>.282</td>
<td>.450</td>
<td>589,352</td>
</tr>
<tr>
<td>Low Doc</td>
<td>.309</td>
<td>.462</td>
<td>2,313,482</td>
<td>.441</td>
<td>.497</td>
<td>308,613</td>
</tr>
<tr>
<td>Adjustable</td>
<td>.272</td>
<td>.445</td>
<td>3,806,578</td>
<td>.687</td>
<td>.464</td>
<td>583,636</td>
</tr>
<tr>
<td>Borrower FICO</td>
<td>711.1</td>
<td>59.2</td>
<td>3,843,810</td>
<td>728.0</td>
<td>48.1</td>
<td>589,352</td>
</tr>
<tr>
<td>Loan Amount ($)</td>
<td>194,826</td>
<td>94,789</td>
<td>3,843,738</td>
<td>644,290</td>
<td>384,217</td>
<td>589,352</td>
</tr>
<tr>
<td>Loan-to-Value</td>
<td>79.0</td>
<td>14.7</td>
<td>3,822,043</td>
<td>76.0</td>
<td>9.5</td>
<td>588,094</td>
</tr>
<tr>
<td>Defaulted</td>
<td>.050</td>
<td>.219</td>
<td>3,843,810</td>
<td>.054</td>
<td>.226</td>
<td>589,352</td>
</tr>
</tbody>
</table>

Notes: Low Doc includes both “low” and “no” documentation loans. Loan Amount in 2007 dollars. Defaulted equal to 1 if loan became 61 days or more overdue within 18 months of origination.

Table 3. Summary Statistics: Low Documentation Sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>S.D.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE Securitized</td>
<td>.584</td>
<td>.493</td>
<td>851,683</td>
</tr>
<tr>
<td>Private Securitized</td>
<td>.263</td>
<td>.440</td>
<td>851,683</td>
</tr>
<tr>
<td>Portfolio</td>
<td>.153</td>
<td>.360</td>
<td>851,683</td>
</tr>
<tr>
<td>Jumbo</td>
<td>.160</td>
<td>.366</td>
<td>851,683</td>
</tr>
<tr>
<td>Adjustable</td>
<td>.411</td>
<td>.492</td>
<td>850,180</td>
</tr>
<tr>
<td>Borrower FICO</td>
<td>709.2</td>
<td>55.8</td>
<td>851,683</td>
</tr>
<tr>
<td>Loan Amount ($)</td>
<td>274,182</td>
<td>259,534</td>
<td>851,683</td>
</tr>
<tr>
<td>Loan-to-Value</td>
<td>78.2</td>
<td>13.6</td>
<td>851,234</td>
</tr>
<tr>
<td>Defaulted</td>
<td>.058</td>
<td>.233</td>
<td>851,683</td>
</tr>
</tbody>
</table>

Notes: Low Doc includes both “low” and “no” documentation loans. Loan Amount in 2007 dollars. Defaulted equal to 1 if loan became 61 days or more overdue within 18 months of origination.
TABLE 4. Discontinuities in Frequency, Default, and Securitization at FICO 620

<table>
<thead>
<tr>
<th></th>
<th>log(Frequency)</th>
<th>Default</th>
<th>Securitization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Collapsed</td>
<td>(2) McCrory</td>
<td>(3) Polynomial</td>
</tr>
<tr>
<td>Discontinuity at 620</td>
<td>.420***</td>
<td>.021***</td>
<td>.004</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.068)</td>
<td>(.004)</td>
<td>(.004)</td>
</tr>
<tr>
<td>Predicted at 619</td>
<td>-</td>
<td>.142</td>
<td>.872</td>
</tr>
<tr>
<td>N</td>
<td>301</td>
<td>3,843,810</td>
<td>3,843,810</td>
</tr>
</tbody>
</table>

Panel A: Conforming Loans

<table>
<thead>
<tr>
<th></th>
<th>log(Frequency)</th>
<th>Default</th>
<th>Securitization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Collapsed</td>
<td>(2) McCrory</td>
<td>(3) Polynomial</td>
</tr>
<tr>
<td>Discontinuity at 620</td>
<td>.806***</td>
<td>.028</td>
<td>.047**</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.082)</td>
<td>(.018)</td>
<td>(.020)</td>
</tr>
<tr>
<td>Predicted at 619</td>
<td>-</td>
<td>.190</td>
<td>.683</td>
</tr>
<tr>
<td>N</td>
<td>301</td>
<td>589,352</td>
<td>589,352</td>
</tr>
</tbody>
</table>

Panel B: Jumbo Loans

<table>
<thead>
<tr>
<th></th>
<th>log(Frequency)</th>
<th>Default</th>
<th>Securitization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Collapsed</td>
<td>(2) McCrory</td>
<td>(3) Polynomial</td>
</tr>
<tr>
<td>Discontinuity at 620</td>
<td>.669***</td>
<td>.059***</td>
<td>-. 014*</td>
</tr>
<tr>
<td>s.e.</td>
<td>(. 071)</td>
<td>(. 009)</td>
<td>(. 007)</td>
</tr>
<tr>
<td>Predicted at 619</td>
<td>-</td>
<td>.135</td>
<td>.880</td>
</tr>
<tr>
<td>N</td>
<td>301</td>
<td>851,683</td>
<td>851,683</td>
</tr>
</tbody>
</table>

Panel C: Low Doc Loans

Notes: Column 1 uses data collapsed to one observation per FICO score on the interval [500,800], with frequency as the dependent variable. Column 2 uses a local linear regression, as outlined in McCrory (2008). Both columns 1 and 2 report the discontinuity as a log difference. Columns 3 and 5 use a 6th-order polynomial in FICO on either side of the 620 cutoff. Columns 4 and 6 restrict the data to a local neighborhood [610,629] and fit a line on either side of 620. Columns 3 through 6 contain year fixed effects. Heteroskedasticity-robust standard errors in parentheses. (***): significant at 1%; (**): significant at 5%; (*): significant at 10%.
TABLE 5. Securitization Rates During the Enforcement of Anti-Predatory Lending Laws in Georgia and New Jersey

<table>
<thead>
<tr>
<th></th>
<th>Law Period</th>
<th>Non-Law Period</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia</td>
<td>.963</td>
<td>.862</td>
<td>.101***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.007)</td>
</tr>
<tr>
<td>N</td>
<td>1,276</td>
<td>5,041</td>
<td></td>
</tr>
<tr>
<td>Neighboring states (AL, NC, SC, TN, FL)</td>
<td>.946</td>
<td>.872</td>
<td>.074***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.004)</td>
<td>(.003)</td>
<td>(.005)</td>
</tr>
<tr>
<td>N</td>
<td>3,074</td>
<td>15,009</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>.017**</td>
<td>-.010*</td>
<td>.027***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.007)</td>
<td>(.006)</td>
<td>(.009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Law Period</th>
<th>Non-Law Period</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>.828</td>
<td>.862</td>
<td>-.034***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.004)</td>
<td>(.002)</td>
<td>(.005)</td>
</tr>
<tr>
<td>N</td>
<td>8,127</td>
<td>22,394</td>
<td></td>
</tr>
<tr>
<td>Neighboring states (NY, PA, DE)</td>
<td>.803</td>
<td>.839</td>
<td>-.036***</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.002)</td>
<td>(.002)</td>
<td>(.003)</td>
</tr>
<tr>
<td>N</td>
<td>18,639</td>
<td>56,913</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>.025***</td>
<td>.023***</td>
<td>.002</td>
</tr>
<tr>
<td>s.e.</td>
<td>(.005)</td>
<td>(.003)</td>
<td>(.006)</td>
</tr>
</tbody>
</table>

Notes: For Georgia, Law Period is equal to 1 if the loan was originated between the start of October 2002 and the end of February 2003. The sample period is six months longer than the Law Period on either end: from April 2002 to August 2003. For New Jersey, Law Period is equal to 1 if the loan was originated between the start of December 2003 and the end of May 2004. The sample period is six months longer than the Law Period on either end: from June 2003 to November 2004. Heteroskedasticity-robust standard errors in parentheses. (***), (**) significant at 1%, 5%, 10%.