Discussion of Guerrieri, Hartley and Hurst

Morris A. Davis

EFG Meetings

February 2010
This is an ambitious paper.

Model:
The authors develop a nontrivial model with two types of agents (rich/poor) and an externality that predicts:

a. When economy-wide interest rates fall
b. Then house prices in relatively inexpensive areas of an MSA appreciate faster than in relatively expensive areas.

Data:
Data on house prices from a variety of sources appear consistent with model predictions.
In the Model:

- In their explanation of changes to relative prices within MSAs, the authors abstract from changes to
 a. Risk (Piazzesi et. al. 2007)
 b. Credit constraints (Ortalo-Magne and Rady 2006)

- Changes to relative prices occur because relative rents change. (All rents are discounted using identical rates).

- We know that credit conditions changed and suspect that the premium to risk changed.
Credit Conditions

Source: Gerardi, Lehnert, Sherlund, Willen (2008)

Massachusetts Originations, 2000 - 2007

<table>
<thead>
<tr>
<th>Year</th>
<th>Combined LTV Median</th>
<th>% ≥ 0.90</th>
<th>Subprime purchase %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0.824</td>
<td>31.67</td>
<td>2.43</td>
</tr>
<tr>
<td>2001</td>
<td>0.850</td>
<td>34.42</td>
<td>2.89</td>
</tr>
<tr>
<td>2002</td>
<td>0.820</td>
<td>32.32</td>
<td>3.88</td>
</tr>
<tr>
<td>2003</td>
<td>0.850</td>
<td>34.47</td>
<td>6.86</td>
</tr>
<tr>
<td>2004</td>
<td>0.866</td>
<td>35.68</td>
<td>9.99</td>
</tr>
<tr>
<td>2005</td>
<td>0.899</td>
<td>39.40</td>
<td>14.81</td>
</tr>
<tr>
<td>2006</td>
<td>0.900</td>
<td>41.65</td>
<td>12.96</td>
</tr>
<tr>
<td>2007</td>
<td>0.900</td>
<td>41.62</td>
<td>3.95</td>
</tr>
</tbody>
</table>
Spreads on Debt

Credit Risk Reprices
S&P Composite Spreads

- S&P Investment Grade
- S&P Speculative Grade
- S&P Financial Institutions
- S&P Banks

Data as of April 24, 2008. Source: Standard & Poor’s Global Fixed Income Research

Permission to reprint or distribute any content from this presentation requires the written approval of Standard & Poor’s.
Initial Thoughts

- When I first read the paper, I thought it was risky to propose a model that attributes observed changes in relative prices within MSAs to changes in relative rents.

- The authors do not have data on rents.

- Perhaps risk premia and/or credit conditions played a role.
Chicago Submarkets Data from REIS, Inc.

Submarkets:
1. Lincoln Park
2. City West
3. Gold Coast
4. The Loop
5. South Shore
6. Southeast Cook County
7. Southwest Cook County
8. Downers Grove
9. Woodridge/Lisle
10. Aurora/Naperville
11. Wheeling
12. Orland Park/Plainfield
13. Schaumburg/Lombard
14. Palatine
15. Glenview/Evanston
16. Rogers Park/Uptown
17. Belmont/Central
18. Oak Park
19. Glen Ellyn/Wheaton
20. O'Hare
21. East Lake County
22. West Lake County
23. McHenry County
24. Kane County
25. Joliet

Morris A. Davis
Discussion of Guerrieri et. al.
Discussion of Guerrieri et al.
The within-Chicago rent data show some interesting variation.

Some of the results the authors document in the case of prices appear to hold (qualitatively) in the case of rents.

- Rents for the closest-in suburbs increased at the fastest rate (2000-2006).

- Rental growth is negatively correlated with initial rental level.
Chicago Submarkets Data from REIS, Inc.

discussion of Guerrieri et al.

Morris A. Davis
Chicago Submarket Data from REIS, Inc.

Ann. Growth Rate of Rents, 2000-2006 vs. Level of Rents, 2000

Morris A. Davis
Discussion of Guerrieri et. al.
Rent Regressions: Chicago Submarket Data

Regress Annualized Growth Rate of Rents, 2000-2006 on Level of Rents (2000).

<table>
<thead>
<tr>
<th></th>
<th>All Data</th>
<th>Rent < $1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Growth, 2000-2006</td>
<td>0.41%</td>
<td>0.42%</td>
</tr>
<tr>
<td>Avg. Level, 2000</td>
<td>$889</td>
<td>$845</td>
</tr>
<tr>
<td>Coefficient</td>
<td>-0.0018</td>
<td>-0.0051</td>
</tr>
<tr>
<td>Robust SE</td>
<td>0.00094</td>
<td>0.0016</td>
</tr>
<tr>
<td>t-stat</td>
<td>-1.88</td>
<td>-3.29</td>
</tr>
<tr>
<td>N</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.14</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Regression of total pct. change in rent on log level of rent: estimate is -0.27 (0.07). The authors estimate -0.33 (0.05).
So, something very interesting is in the data.

But is this the model we want to explain the data?

Study closely two features of the model:

- Quasi-linear preferences.
- Fixed housing density.
Suppose agents in location i have preferences of

$$c_i + \phi H_i h_i^\alpha$$

Agents take H_i as given. The rental price must satisfy:

$$\alpha \phi H_i h_i^{\alpha - 1} = R_i$$

Implying $h_i = \left(\frac{R_i}{\alpha \phi H_i} \right)^{\frac{1}{\alpha - 1}}$

Quasi-linear preferences:
Housing demand is independent of income.

The authors vary ϕ by type so demand is a function of income.
From before

\[R_i h_i = \alpha \phi H_i h_i^\alpha \]
\[c_i = y_i - \alpha \phi H_i h_i^\alpha \]

Utility in any location \(i \) is therefore

\[U_i = y_i + \left(\frac{1 - \alpha}{\alpha} \right) R_i h_i \]

- \(y_i, U_i \) are identical for all \(i \) in a given MSA.
- Within-MSA rental \textit{expenditures} are constant for each type.
- Within-MSA variation only due to variation in type.
But, as the authors note (p. 3)

Any model of housing price dynamics designed to explain cross-city house price dynamics should also be able to explain within city house price dynamics.

If utility is equated across MSAs i and j, (holding type fixed)

$$y_i + \left(\frac{1 - \alpha}{\alpha} \right) R_i h_i = y_j + \left(\frac{1 - \alpha}{\alpha} \right) R_j h_j$$

For a given type:
In MSAs where wages are high, rental expenditures are low!
MSA-Level Data, 2000 Census

Discussion of Guerrieri et. al.
Housing supply restrictions play a key role in the paper.

If $R_i > \hat{r}C$, location i will be fully developed. (meaning $n_i h_i = 1$ in that location).

Since $n_i h_i$ is always $= 1$, a shock to housing demand can only lead to a horizontal expansion of neighborhood boundaries.

Leads to “Gentrification” and/or “Expansion”

The locations where type switches (poor to rich) or newly developed locations (nothing to poor) have the fastest relative growth rates in rents.
Consider preferences: \(c_i + \phi H_i h_i^\alpha \) with \(\phi^p < \phi^r \).

In a segregated equilibrium, poor consume no housing.

- Denote boundary of rich neighborhood as \(I \). \(H_I = \gamma \).

\[
\hat{r}C = R_I = \alpha \phi \gamma h_I^\alpha - 1
\]

- Consider some other neighborhood \(i' = I - \gamma \). \(H_{i'} = 2\gamma \).

\[
R_{i'} = \alpha \phi 2\gamma h_{i'}^\alpha - 1
\]

- Indifference: \(R_I h_I = R_{i'} h_{i'} \). This implies \(h_{i'} = (1/2)^{1/\alpha} h_I \).

- \(\hat{r} \) or \(C \) fall: \(h_I \) and \(h_{i'} \) increase.

With fixed housing density, city must expand.