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1. Introduction

It is well-documented that US states, cities and counties all experience highly

persistent population growth.1 In this paper we introduce complementary ev-

idence: at the annual frequency cities experience significant, random-walk-like

productivity shocks, yet population is very slow to adjust to them. Without any

impediments to moving, population should adjust quickly as workers migrate to

the more productive cities.2 There must be substantial barriers to population

re-allocation. This paper seeks to understand and quantify these barriers.

There are two natural barriers to rapid population movements: adjustment

costs in migration and housing. Using state-level data, Blanchard and Katz

(1992) argue that persistent labor demand shocks are accommodated over the

long run through migration. Kennan and Walker (2011) use individual-level

data to estimate interstate migration propensities as a function of relative wages

and intrinsic migration costs. These propensities imply very slow population

adjustments to permanent wage shocks. If migration is important, then the

decisions over whether to leave one’s current location and if so where to move to

should be crucial to understanding population dynamics.

Migration may be important, but the speed with which it occurs does not

depend on its intrinsic costs alone. New workers require housing so the speed

of population adjustments is limited by the supply of local housing. Housing

is naturally slow to adjust to shocks because it is immobile across cities and

the competing uses of local labor imply increasing marginal construction costs.

Glaeser and Gyourko (2005) identify an additional channel. They argue that

housing impedes population declines when a large, durable and immobile stock

makes housing relatively cheap and discourages people to leave a city.

1For examples, see Blanchard and Katz (1992), Glaeser, Scheinkman, and Shleifer (1995)
and Rappaport (2004).

2See Turek (1985) for evidence that net migration rather than births and deaths is the
dominant source of regional variation in population growth in the US.
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This paper quantifies the impact of migration and housing on urban popu-

lation dynamics by constructing a quantitative dynamic stochastic general equi-

librium model of cities and analyzing it within the context of a panel dataset

comprising 365 US cities over the period 1985-2007. Blanchard and Katz (1992),

Glaeser and Gyourko (2005) and Kennan and Walker (2011) do not isolate the

role of housing from the intrinsic costs that slow down migration. Our framework

makes this possible.

Measuring migration’s intrinsic costs is key to our findings. Our measurement

is based on a striking empirical regularity we uncover regarding the relationship

between gross and net migration. Specifically, the annual arrival rate of a city

(total arrivals divided by the initial population) is essentially linearly increasing

in its corresponding net migration rate (total arrivals minus total departures,

divided by the initial population.) Linearity places strong restrictions on the

nature of migration decisions and delivers a path to measuring their costs via

the magnitude of the slope coefficient. Given its importance to our analysis, we

provide corroborating evidence for linearity. In particular we verify the prediction

that if the annual arrivals-versus-net relationship is linear then a similar linear

relationship with the identical slope coefficient should hold for migration rates

measured over longer horizons.

The slope of the arrivals-versus-net relationship lies between 0 and 1 which

suggests that a city’s population adjusts by movements in arrivals and departures

in opposite directions. Such a negative correlation might seem surprising given

Kennan and Walker (2011)’s finding that recent arrivals are more likely to leave

a city than long-time residents and Coen-Pirani (2010)’s demonstration that this

phenomenon can induce a positive correlation. However a positive labor demand

shock makes incumbents who are on the margin of leaving a city less likely to do so

while at the same time it attracts migrants, which induces a negative correlation.
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Consistent with the operation of this mechanism, we estimate that a city’s arrival

rate rises and departure rate falls after it receives a positive productivity shock.

Our empirical findings lead us to abstract from the recent arrival phenomenon in

our analysis.

To disentangle the roles of housing and migration in slow population adjust-

ments we integrate a new model of inter-city migration inspired by our empirical

findings into an otherwise familiar generalization of the neoclassical growth model

with endogenous local housing and labor supply. We include endogenous labor

supply because employing more of the existing population is a natural substi-

tute for migration to accommodate higher labor demand. Indeed Blanchard and

Katz (1992) identify this as one of the main channels through which a state’s

employment responds in the years immediately following a labor demand shock.

Our modeling of migration shares some features with the literature, but in

contrast it is consistent with the strong restrictions implied by our linearity find-

ing. As in Kennan and Walker (2011) the decision to leave a city is driven by

idiosyncratic shocks to workers’ tastes for their current city relative to others.

Conditional on moving, a worker’s location choice includes a directed component

because empirically arrival rates are increasing in net migration (otherwise ar-

rival rates would be independent of net migration.) Costly directed migration

captures the many ways workers find new cities to live and work, including via

informal contacts between friends and family, professional networks, specialized

firms like head-hunters, advertising that promotes cities as desirable places to

live and work, firms’ human resource departments, and via recruiting by workers

whose primary responsibility is some other productive activity.3

We measure the roles of housing and migration in explaining slow population

3Our model abstracts from the pervasive decline in gross migration that has been modeled
by Karahan and Rhee (2014) and Kaplan and Schulhofer-Wohl (2015). It is an open question
whether the mechanisms we emphasize would interact with those that have been used to explain
the trend.
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adjustments by studying a calibrated version of our model. The measurement of

migration costs suggested by our linearity finding is key to our calibration proce-

dure. In addition we use microeconomic evidence on migration; the population

distribution across cities; new evidence on city productivity dynamics; a new es-

timate of a city’s wage-elasticity of labor supply; and aggregate ratios familiar

from other studies based on the neoclassical growth model.

To build confidence in our calibrated model we compare it to dynamic re-

sponses to productivity shocks of a city’s population, gross migration, employ-

ment, wages, residential investment and house prices we estimate from our panel

data. Despite calibrating our model to different information, the model does well

along these dimensions and importantly it reproduces the slow population dy-

namics. We also find that the model is broadly consistent with key unconditional

features of the data such as relative volatility, contemporaneous co-movement,

and persistence at the annual frequency and the longer run persistence that

has been emphasized in the literature. While being driven only by productiv-

ity shocks, our model generates a substantial fraction of the variation we find in

our data.

Having established the empirical relevance of our model we use it to quantify

the influence of housing and migration on population adjustments. We find that

workers’ costs of finding new cities are the predominant source of slow popula-

tion adjustments suggesting that they represent significant barriers to population

reallocation. In the absence of migration frictions, adjustment costs in housing

do lower the amplitude and increase the persistence of population’s response to

a productivity shock. However, if migration costs are already present, adding

adjustment costs for housing does little to influence population dynamics.

We also use our model to examine the determinants of persistent urban de-

cline. In our data the populations of many cities decline throughout the sample
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period. Glaeser and Gyourko (2005, pp. 368–369) dismiss a role for migration in

explaining this behavior. We find that declining cities also experience declining

relative productivity, so our model can in principle account for persistent urban

decline. In fact it does, through the slow response of population to past declines

in productivity. This suggests that costly migration could be a major factor in

explaining persistent urban decline even though, as emphasized by Glaeser and

Gyourko (2005), arrival rates remain high in declining cities.

Our model is a dynamic version of the classic Roback (1982) and Rosen

(1979) model of cities with housing and costless mobility. Because it is static,

the Roback-Rosen model does not address migration or population adjustments

to shocks. Van Nieuwerburgh and Weil (2010) introduce dynamics to this frame-

work. Their model has implications for net migration, but not gross flows. Coen-

Pirani (2010) also constructs a dynamic Roback-Rosen model. He studies gross

worker flows among US states in a search and matching framework borrowed from

studies of gross worker flows among firms. We find stark differences between gross

worker flows between firms compared to those between cities and so we adopt a

different approach to modeling migration. Rappaport (2004) studies a two-city

equilibrium model with quadratic adjustment costs in net migration, but he does

not identify the size of the costs. While the reduced form of our model similarly

involves quadratic adjustment costs in net migration, we are able to identify the

magnitude of these costs by exploiting our linearity finding.

We contribute to an extensive empirical and theoretical microeconomic liter-

ature on migration, surveyed by Greenwood (1997) and Lucas (1997). Kennan

and Walker (2011) is an important recent contribution to this literature. Their

analysis is centered around the migration choice problem of an individual and

abstracts from housing. In contrast we include housing and equilibrium interac-

tions. Mangum (2015) studies housing and migration in the context of a choice
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problem like Kennan and Walker (2011)’s. While Mangum (2015) focuses on

similar issues, he models the housing and labor markets as reduced forms and

does not investigate the relationship between between gross and net migration

that is central to this paper.

The housing boom and bust in the 2000s prompted a literature that quanti-

fies how housing frictions impede geographical labor reallocation. For example,

Karahan and Rhee (2013), Lloyd-Ellis and Head (2012) and Nenov (2015) study

how house price collapses limit labor reallocation through disincentives to migrate

arising from home ownership and local search frictions. We abstract from these

factors. Nenov (2015) and Karahan and Rhee (2013) model gross migration, but

they do not address the linear relationship between gross and net migration.4

The paper is organized as follows. We begin by describing the new empirical

evidence that guides our analysis. Next we introduce our model of migration

within a static setting to highlight its key mechanisms. We then embed this

static model within a dynamic stochastic general equilibrium setting; describe

how we calibrate this model; establish the empirical relevance of the calibrated

model; and quantify the roles of housing and migration implied by the calibrated

model. The last section concludes by discussing some drawbacks to our analysis

and directions for future research.

2. Empirical Evidence

We analyze an annual panel data-set covering 1985 to 2007 that includes popula-

tion, net and gross migration, employment, wages, residential construction, and

house prices for 365 Metropolitan Statistical Areas (MSAs) comprising about

83% of the aggregate population. An MSA is defined as a region with a rela-

4Ferreira, Gyourko, and Tracy (2012), Modestino and Dennett (2013) and Schulhofer-Wohl
(2012) investigate the effects of housing-related financial frictions on mobility. We abstract
from financial frictions in this paper.

6



tively high population density and close economic ties throughout as measured

by commuting patterns. While they sometimes include multiple legally incorpo-

rated cities, for convenience we refer to MSAs as cities. Cities are a natural unit

of analysis as they represent geographically distinct labor markets. Appendix A

describes the sources of our data and Appendix B discusses our empirical findings

in more detail.

2.1. Gross and Net Migration

We calculate annual city-to-city migration rates using data on tax returns from

the Internal Revenue Service (IRS). IRS data are unique in covering a large num-

ber of US cities. The Current Population Survey and the American Community

Survey are widely used to construct annual state-level migration rates, but small

samples substantially limit their coverage of cities. We show in Appendix B

that our key findings for cities extend to the state-level using all three data-sets.

That the state-level results are robust to the data source is noteworthy given the

drawbacks of the IRS data highlighted in Kaplan and Schulhofer-Wohl (2015).

Define a city’s one year arrival rate as the total number of people that move to

a city within a year divided by its beginning-of-year population. The correspond-

ing one year departure rate is defined similarly in terms of people leaving a city.

Gross migration rates fluctuate over the business cycle and have been falling over

our sample period.5 To abstract from these dynamics we subtract from a city’s

annual gross rate the corresponding cross-section average. We define a city’s net

migration rate as the difference between these two gross rates so that it too is

free of a time effect.

Figure 1 displays gross and net migration rates by population decile with the

time effects removed for all city-year observations. Net migration is seen to be

5See Saks and Wozniak (2011) for evidence on the cyclicality of gross migration and Molloy,
Smith, and Wozniak (2011) and Kaplan and Schulhofer-Wohl (2015) for evidence of its trend.
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unrelated to city size. This confirms Gibrat’s law for cities holds in our dataset.

However, gross migration clearly declines with city size. As far as we know this

is a new finding. While worthy of further study, its presence conflates cross-city

variation with the within-city dynamics that are our focus and so we abstract

from it. We do this by subtracting from each year’s arrival and departure rate

the sample average gross migration rate for that city. This removes city fixed

effects in gross migration without affecting net migration rates, which Gibrat’s

law implies are not present.

Figure 1: Gross and net migration rates by population decile
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Figure 2 displays mean gross migration rates versus mean net migration rates

for each net migration decile, after removing both time and fixed effects and

adding the corresponding unconditional mean. We see that the arrival (depar-

ture) rate is linearly increasing (decreasing) in net migration with the individ-

ual observations lining up almost exactly on the regression lines. The arrival

rate being increasing in net migration is prima facie evidence of directed migra-

tion since otherwise they would be independent. The linearity finding contrasts

sharply with the behavior of firm-worker flows found by Davis, Faberman, and
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Figure 2: Gross migration rates by net migration
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Haltiwanger (2006). Hires are flat near zero for negative net flows and linearly

increasing for positive net flows; separations are the mirror image. These dif-

ferences between worker-city and worker-firm flows suggest models designed to

explain the latter are invalid in our context – we require a different theory.

Since linearity is central to our modeling and measurement it is important

to have some corroborating evidence for it. We provide this in Appendix B by

showing that a prediction of linearity holds in our data. The prediction is that if

gross and net migration rates are linearly related at the annual frequency, then

they must be linearly related for multi-year migration rates as well and that the

multi-year slope coefficients will be identical to their one-year counterparts.

Figure 2 reflects that arrival and departure rates are negatively correlated.

This finding emerges from addressing city fixed effects in gross migration, since,

as Figure 1 shows, the correlation is positive otherwise. Coen-Pirani (2010) re-

ports that state-level gross migration rates are positively correlated. However, we

show in Appendix B that after we remove fixed effects state-level gross migration

display a very similar pattern to that found in Figure 2.
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2.2. Responses of Population and Gross Migration to TFP Shocks

We estimate dynamic responses of city-level variables to local productivity shocks

by exploiting the first order conditions of competitive final and intermediate good

producers in the model described in Section 4.6 There are N cities that each

produce a distinct intermediate good used as an input into the production of

final goods. Intermediate goods in city i at date t are produced according to

yit = sitn
θ
y,itk

γ
y,it, (1)

where sit is exogenous total factor productivity (TFP), ny,it is employment, ky,it

is equipment, θ, γ > 0, and θ+ γ ≤ 1. The output of the final good at date t, Yt,

is produced using inputs of the city-specific intermediate goods according to

Yt =

[
N∑
i=1

yχit

] 1
χ

, (2)

where χ ≤ 1.

Our measurement of city-specific TFP relies on the following definition. For

any variable vit:

v̂it ≡ ln vit −
1

N

N∑
j=1

ln vjt. (3)

Subtracting the mean value of ln vjt in each period eliminates variation due to

aggregate shocks, allowing us to focus on within-city dynamics. We assume that

equipment is perfectly mobile so that its rental rate is common across cities.

It then follows from the first order conditions of final and intermediate good

producers that

∆ŝit =
1− γχ
χ

∆ŵit +
1− θχ− γχ

χ
∆n̂y,it, (4)

6Lloyd-Ellis, Head, and Sun (2014) estimate responses of city-level variables to personal
income shocks identified using a panel VAR.
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where ∆ is the first difference operator and wi denotes the wage in city i. Applying

the first difference operator addresses non-stationarity over the sample period.7

Given values for χ, θ and γ and data on wages and employment we use

equation (4) to measure ∆ŝit, the growth rate of city-specific TFP.8 Below we

calibrate θ and γ using traditional methods and find a value for χ to match

the model to Zipf’s law. With calibrated values χ = .9, θ = .66 and γ = .235

we estimate an AR(1) in ∆ŝit with a statistically significant auto-correlation

coefficient equal to .24. Wooldridge (2002)’s test of the null hypothesis of no first

order serial correlation in the residuals has a p-value of .28, confirming that this

specification is a good fit for the data.9

Let eit denote the residual from the TFP growth regression. We obtain the

response to a TFP shock of variable ∆x̂it using the coefficients b1, b2, . . ., b10

from the following panel regression:

∆x̂it =
10∑
l=1

bleit−l+1 + uit (5)

where uit is an orthogonal error term. The response of x̂it is obtained by summing

the estimated coefficients appropriately. For the gross migration rates we replace

∆x̂it with the rates themselves (net of time and fixed effects) in (5) and identify

the dynamic responses with the estimated coefficients directly.

7It also removes any fixed effects. However, as in Gabaix (1999), our model addresses the
cross-section of city populations without appealing to fixed effects.

8Total employment in our model includes workers that produce houses and intermediate
goods, but we use total employment as our empirical measure of ny,it because we cannot sepa-
rate out housing employment. Construction employment is a small fraction of total employment
so we obtain almost identical results when we exclude total construction employment for the
cities it is available.

9A version of equation (4) can be derived using Davis, Fisher, and Whited (2014)’s agglom-
eration specification. In that case the coefficients on wage and employment growth include
the parameter that governs agglomeration’s effect on local productivity. When we re-estimate
the TFP process using Davis et al. (2014)’s estimate of this parameter the auto-correlation
coefficient and the innovation standard deviation are similar.
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Figure 3: Responses of TFP and population
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Note: Point estimates along with 2 standard error bands.

Figure 4: Responses of arrival and departure rates
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Note: Point estimates along with 2 standard error bands.

Figure 3 and Figure 4 display percentage point deviations of population and

gross migration to one standard deviation shocks to TFP growth. Figure 3 es-

tablishes the claim made in the introduction that TFP responds much like a

random walk, rising quickly to its new long run level, while population responds
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far more slowly, still growing ten years after the shock. The population response

contrasts sharply with Blanchard and Katz (1992) who estimate a reduced form

vector auto-regression and find that state populations converge to their new long

run level within 7 years after a labor demand shock. Figure 4 corroborates Fig-

ure 2 by showing that population adjustments involve responses of arrival and

departure rates in opposite directions of similar magnitudes. These responses re-

inforce the view that improving local prospects could change a city’s population

both by encouraging locals not to move, which lowers the departure rate, and by

attracting new workers, which increases the arrival rate.

3. Modeling Migration

We now introduce our theory of migration by studying a simple, static model

which abstracts from housing, equipment, and labor supply. This model is useful

for developing intuition about migration choices; describing how we can repro-

duce the relationships depicted in Figure 2; and establishing the importance of

modeling gross migration for understanding urban population dynamics. The

main results extend to the model we use for our quantitative analysis.10

3.1. A Static Model

The economy consists of a large number of geographically distinct cities with

initial population x. In each city there are firms which produce identical, freely

tradeable consumption goods with the technology snθ, where s is a city-wide TFP

shock, n is labor and 0 < θ < 1. There is a representative household with a unit

continuum of members that are distributed across city types z = (s, x) according

to the measure µ. Each household member enjoys consumption, C, and supplies

a unit of labor inelastically. After the TFP shocks have been realized, but before

10See the technical appendix available at http://morris.marginalq.com/research.html

for a detailed analysis of the static and quantitative models.
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production takes place, the household decides how many of its members leave

each city and how many of those chosen to leave move to each city. Once these

migration decisions have been made, production and consumption occur.

The departure decision is based on each household member receiving a location-

taste shock ψ, with measure µl, that subtracts from their utility of staying in the

city in which they are initially located. This kind of shock appears in the migra-

tion models of Kennan and Walker (2011), Karahan and Rhee (2013) and Nenov

(2015). To match the empirical relationship between gross and net migration

we assume the distribution of individual location-taste shocks in a city of type z

satisfies: ∫ ψ̄(l(z)/x)

−∞
ψdµl = −ψ1

l(z)

x
+
ψ2

2

(
l(z)

x

)2

where ψ1, ψ2 > 0 and ψ̄ (l(z)/x) is defined by l(z)/x =
∫ ψ̄(l(z)/x)

−∞ dµl.

This quadratic specification is U-shaped starting at the origin which means

that the first workers to leave a city are those for whom leaving raises their utility.

As more people leave the remaining inhabitants are those who have a strong

preference for staying. These features are consistent with Kennan and Walker

(2011)’s evidence that individuals who move receive substantial non-pecuniary

benefits and that non-movers would find it extremely costly if they were forced

to move. For example, many individuals move to be near family members or find

it very costly to move because they are already near family members. Subject to

these shocks, the household determines how many of its members from each city

must leave to find new cities.

When deciding where to send the leavers the household knows the distribution

of city types µ but not the location of any specific type z. However, it can find a

particular type through directed migration by obtaining a guided trip. We choose

a functional form for producing guided trips to match the evidence on gross

and net migration. By giving up u units of utility each household member can
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produce
√

2A−1/2u1/2 guided trips to her initial location where A > 0. Therefore,

to attract a(z) workers to a city of the indicated type the household must incur a

total utility cost of (A/2) (a(z)/x)2 x. Costly guided trips encompass the myriad

of ways in which workers find a particular city to live and work.

If a household member does not obtain a guided trip it can migrate to an-

other city using undirected migration. Specifically, by incurring a utility cost τ

a leaver is randomly allocated to another city in proportion to its initial popula-

tion. Including undirected migration captures the idea that choosing to move to

a particular city is often the outcome of idiosyncratic factors other than wages

or housing costs that are difficult to model explicitly, such as attractiveness of

amenities and proximity to family members.11 Furthermore, it is natural to let

people move to a location without forcing them to find someone to guide them.

We characterize allocations in this economy by solving the following planning

problem:

max
{C,Λ,a(z),
l(z),p(z)}

{
lnC −

∫ [
A

2

(
a (z)

x

)2

x+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}
(6)

subject to

p (z) ≤ x+ a (z) + Λx− l (z) ,∀ z (7)∫
[a (z) + Λx] dµ ≤

∫
l (z) dµ (8)

C ≤
∫
sp (z)θ dµ (9)

11Kennan and Walker (2011) include both undirected and directed migration. It is undi-
rected because to learn a location’s permanent component of wages workers have to migrate
there. It is directed because workers retain information about locations to which they have
previously migrated and include this information in their current migration decision along with
expectations about locations they have not visited already.
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and non-negativity constraints on the choice variables.12 The variable Λ is the

fraction of the household that engages in undirected migration. Since these work-

ers are allocated to cities in proportion to their initial populations, Λ also corre-

sponds to the share of a city’s initial population that arrives through undirected

migration. Constraint (7) states that population in a city is no greater than the

initial population plus arrivals through guided trips and undirected migration mi-

nus the number of workers who migrate out of the city. Constraint (8) says that

total arrivals can be no greater than the total number of workers who migrate out

of cities and (9) restricts consumption to be no greater than total production,

taking into account that each individual supplies a unit of labor inelastically,

n(z) = p(z), ∀z.

3.2. The Gross Migration Margins

It is necessary to include frictions on both gross migration margins to match

the evidence depicted in Figure 2. Suppose A = 0 so that guided trips can

be produced at no cost, but that household members continue to be subject to

location-taste shocks, ψ1, ψ2 > 0. Then it is straightforward to show

a (z)

x
= max

{
p (z)− x

x
+
ψ1

ψ2

, 0

}
and

l (z)

x
= max

{
ψ1

ψ2

,−
(
p (z)− x

x

)}
.

Observe that as long as the net population growth rate, (p(z)− x)/x, is not too

negative, the planner sets the departure rate, l(z)/x at the point of maximum

benefits, ψ1/ψ2, and adjusts population using the arrival rate, a(z)/x, only. In

this situation the departure rate is independent of net population adjustments,

contradicting Figure 2. Now suppose that there are no location-taste shocks,

12See Appendix C for one possible decentralization.
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ψ1 = ψ2 = 0, but it is costly to create guided trips, A > 0. In this case we find

a (z)

x
= max

{
p (z)− x

x
− Λ, 0

}
and

l (z)

x
= max

{
−
(
p (z)− x

x
− Λ

)
, 0

}
.

The planner always goes to a corner: when net population growth is positive

the departure rate is set to zero, and when net population growth is negative

the arrival rate is set to zero. Clearly the relationship between gross and net

migration in this situation also contradicts Figure 2. Therefore to be consistent

with Figure 2 it is necessary to include costs on both gross migration margins.

For the model to be consistent with Figure 2, the number of workers leaving

a city and the number arriving to the same city using guided trips must both

be strictly positive, l(z) > 0 and a (z) > 0. The reason we require l(z) > 0 is

that gross out-migration is always positive in Figure 2. The reason we require

a(z) > 0 is that otherwise there would be intervals of net migration in which

arrival rates are constant, equal to Λ, which is also inconsistent with Figure 2.

Therefore, unless otherwise noted, from now on we assume that a(z) > 0 and

l(z) > 0.

Combining the first order conditions for Λ and a(z) we obtain

τ = A

∫
a (z) dµ.

This equation describes the trade-off between using directed and undirected mi-

gration. The marginal cost of raising the fraction of household members engaged

in undirected migration is equated to the average marginal cost of allocating those

household members using guided trips. The averaging reflects the fact that undi-

rected migration allocates workers in proportion to each city’s initial population.
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The first order conditions for a(z) and l(z) imply that

A
a (z)

x
= ψ1 − ψ2

l (z)

x
.

Intuitively, migration out of a city increases to the point where the marginal

benefits of doing so (recall that the location-taste shocks initially imply benefits

to leaving a city) are equated with the marginal cost of attracting workers into

the city.

As long as a (z) > 0 and l (z) > 0 population adjustments are independent

of the undirected migration decision. Undirected migration is determined by

the solution to τ = dΦ(Λ)/Λ. In the model we use in our quantitative analysis

arrivals are set to zero in especially undesirable cities. Still, for most cases ar-

rivals are strictly positive so that undirected migration is essentially irrelevant

for our results. This is a useful property given that there is little evidence on the

magnitude of undirected migration.

3.3. Connecting Figure 2 to Population Adjustments

The planner’s first order conditions reveal how gross migration relates to net

migration. From the first order conditions for a(z) and l(z) and the population

constraint, (7), it is straightforward to show that

a (z)

x
+ Λ =

ψ1

A+ ψ2

+
A

A+ ψ2

Λ +
ψ2

A+ ψ2

(
p (z)− x

x

)
. (10)

The arrival rate is an affine function of the net migration rate (p(z)− x) /x with

the linear coefficient satisfying 0 < ψ2/(ψ2 +A) < 1. The departure rate is also is

an affine function of the net migration rate with the linear coefficient satisfying

−1 < −A/(ψ2 + A) < 0. These relationships establish that gross migration in

the model can be made consistent with Figure 2. This result is the underlying
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reason for our specifications of the location-taste shocks and the production of

guided trips. Clearly, the relationship between gross and net migration depicted

in Figure 2 places strong restrictions on the nature of migration costs.

The speed of population adjustments is directly connected to the gross mi-

gration choices. This can be seen by substituting for a (z) and l (z) in the origi-

nal planning problem using their relationships to net migration described above,

which simplifies it to

max
{p(z),Λ}

{
ln

(∫
sp (z)θ dµ

)
−
∫ [

Φ(Λ) +
1

2

Aψ2

A+ ψ2

(
p (z)− x

x

)2

x

]
dµ− τΛ

}

subject to:

∫
p (z) dµ =

∫
xdµ (11)

with non-negativity constraints on the choice variables and where Φ (Λ) is a

quadratic function in Λ involving the underlying parameters ψ1, ψ2 and A. In

deriving this simplified planning problem we have used the fact that (7) and

(8) reduce to (11) and that this constraint holds with equality at the optimum.

Similarly we have used (9) to substitute for consumption in the planner’s objective

function.

When the planning problem is written in this way we see that population ad-

justments do not depend directly on a (z) and l (z). Nevertheless modeling these

decisions is crucial for understanding population dynamics because the coefficient

that determines the speed of population’s adjustment to shocks, Aψ2/(A + ψ2),

involves parameters governing them. Also notice that the reduced form costs of

adjusting population are quadratic. This is a direct consequence of specifying the

location-taste shocks and guided trip technology to reproduce Figure 2. In other

words Figure 2 implies quadratic adjustment costs in net population adjustments.
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4. The Quantitative Model

This section describes our quantitative model. We employ a differentiated goods

version of the neoclassical growth model that incorporates the gross migration

environment described above as well as local residential construction. In principle,

both elements could play an important role shaping population dynamics. The

role of gross migration was explained in detail in the previous section, but the

potential role of housing is more straightforward: since housing is valued by

individuals, adjustment costs in the construction sector are likely to be reflected in

population dynamics.13 Because changes in labor supply are a natural alternative

to migration to accommodate labor demand shocks the model includes a labor

supply decision as well. After describing the model environment we characterize

its unique stationary competitive equilibrium as the solution to a representative

city planning problem with side conditions.

4.1. The Environment

As before the economy consists of a continuum of geographically distinct locations

called cities that are subject to idiosyncratic TFP shocks. Cities are distinguished

by their stock of housing, h, initial population, x, and the current and lagged TFP,

s and s−1.14 The measure over the state vector z = (h, x, s, s−1) is given by µ.

Within cities there are three production sectors corresponding to intermediate

goods, housing services and construction. The representative firm of each sector

maximizes profits taking prices as given. Intermediate goods are distinct to a city

and imperfectly substitutable in the production of the freely tradeable final goods

13This point is demonstrated in Appendix D.
14We assume every city has access to the same quantity of developable land and abstract

from topographical and regulatory variation across cities. As documented by Saiz (2010) and
Gyourko, Saiz, and Summers (2008) in reality there is considerable heterogeneity along these
dimensions which can be viewed as affecting the land available for development. However, our
analysis focuses on the average response of cities to TFP shocks and not the distribution of
these responses across cities.
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non-durable consumption and durable equipment. The technologies for producing

intermediate and final goods are identical to those underlying our estimates of

TFP, described in equations (1) and (2).15 Housing services are produced by

combining residential structures with land, br, according to h1−ζbζr, 0 < ζ < 1.

Following the convention that the prime symbol denotes next period’s value of a

variable, residential structures in a city evolve as

h′ = (1− δh)h+ nαhk
ϑ
hb

1−α−ϑ
h , (12)

where the factor shares are restricted to α, ϑ > 0 and α + ϑ < 1, and 0 <

δh < 1 denotes housing’s depreciation rate. The last term in (12) represents

housing construction. Local TFP s does not impact residential construction,

reflecting our view that residential construction productivity is not a major source

of cross-city variation in TFP. Equation (12) embodies our assumptions that

residential structures are immobile, durable and costly to build quickly. The

latter follows because residential construction requires local labor and land which

have alternative uses in intermediate goods production and housing services. We

assume that equipment is homogenous and perfectly mobile.

There is an infinitely lived representative household that allocates its unit

continuum of members across the cities. One period corresponds to a year. The

household faces the same migration choices described in Section 3, but being

infinitely lived it takes into account the effects of current migration decisions on

its members’ allocation across cities in future periods. In particular, it is now

bound by the constraint

x′ = p (13)

in each city where p continues to denote the post-migration population of a

15Equations (1) and (2) are written in terms of the location of a city, indexed by i, but here
it is convenient to index them by the type of the city as represented by its state vector z.
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city. The household’s members have logarithmic preferences for consumption

and housing services in the city in which they are located.16 Each period, after

the migration decisions have been made, but before production and construction

take place, individual household members receive a labor disutility shock ϕ with

measure µn. Similar to our treatment of migration costs we make a parametric

assumption for the average disutility of working. Specifically, if the household

decides n of its members in a city will work these costs are specified as

∫ ϕ̄(n/p)

−∞
ϕdµn = φ

(
n

p

)π
,

where φ > 0, π ≥ 1 and ϕ̄ (n/p) is defined by n/p =
∫ ϕ̄(n/p)

0
dµn The parameter

π governs the elasticity of a city’s labor supply with respect to the local wage.

4.2. Stationary Competitive Equilibrium

This model has a unique stationary competitive equilibrium. Since it is a convex

economy with no distortions, the welfare theorems apply and so the equilibrium

allocation can be obtained by solving the problem of a planner that maximizes

the expected utility of the representative household subject to the resource feasi-

bility constraints. However, it is more convenient to characterize the equilibrium

allocation as the solution to a representative city-planner’s problem with side

conditions. This approach to studying equilibrium allocation follows Alvarez and

Shimer (2011) and Alvarez and Veracierto (2012).

The city planner enters a period with the state vector z. Taking as given

aggregate output of final goods, Y , the marginal utility of consumption, λ, the

shadow value of adding one individual to the city’s population exclusive of the

arrival and departure costs, λη, the shadow value of equipment, λrk, the arrival

16We assume logarithmic preferences for housing to be consistent with the evidence reported
by Davis and Ortalo-Mangé (2011) that housing’s share in household expenditures is roughly
constant across cities.
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rate of workers through undirected migration Λ, and the transition function for

TFP, Q (s′; s, s−1), the representative city planner solves

V (z) = max
{ny ,nh,ky ,kh,
h′,br,bh,p,a,l}

{
λ

1

χ
Y 1−χ [snθykγy ]χ +H ln

(
h1−ζbζr
p

)
p− φ (ny + nh)

π p1−π

−λrk (ky + kh)− λη (a+ Λx− l)

−A
2

(a
x

)2

x−

[
−ψ1

l

x
+
ψ2

2

(
l

x

)2
]
x+ β

∫
V (z′) dQ (s′; s, s−1)

}
subject to

p = x+ a+ Λx− l (14)

ny + nh ≤ p

br + bh = 1

plus (12), (13), and non-negativity constraints on the choice variables.

The planner’s objective is to maximize the expected present discounted value

of net local surplus. To see this note that the first two terms are the value of

intermediate good production and the housing services consumed in the city. The

next five terms comprise the contemporaneous costs to the planner of obtaining

this surplus: the disutility of sending the indicated number of people to work;

the shadow cost of equipment used in the city; and the disutility of net migration

inclusive of guided trip production and location-taste shocks. The last term is the

discounted continuation value given the updated state vector. Constraining the

achievement of the city planner’s objective are the local resource constraints, the

housing and population transition equations and the non-negativity constraints

on the choice variables. Note that in the statement of the land constraint we

have normalized the local endowment of residential land to unity and used the
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fact that land used for current housing services cannot be built on in the same

period.17

The unique stationary allocation is the solution to the city-planner’s problem

that satisfies particular side conditions. Let {ny, nh, ky, kh, h′, br, bh, p, a, l} denote

the optimal decision rules (which are functions of the state z) for the city planner’s

problem that takes {Y, λ, η, rk,Λ} as given and let µ be the invariant distribution

generated by the optimal decision rules {h′, p} and the transition function Q.

Define the aggregate stock of equipment, K =
∫

(ky + kh) dµ, and per capita

consumption, C = Y − δkK, where 0 < δk < 1 denotes equipment’s depreciation

rate. Now suppose the following equations are satisfied

Y =

{∫ [
sny (z)θ ky (z)γ

]χ
dµ

} 1
χ

(15)

λ =
1

C
(16)∫

a (z) dµ+ Λ =

∫
l (z) dµ (17)

rk =
1

β
− 1 + δk (18)

λ

∫
[ξ (z)− η]xdµ− τ ≤ 0, (= 0 if Λ > 0) (19)

Then {C,K, ny, nh, ky, kh, h′, br, bh, p,Λ, a, l} is a steady state allocation.18 Equa-

tion (15) expresses aggregate output in terms of each city’s intermediate good

production. This equation is the theoretical counterpart to equation (2) used to

estimate city-specific TFP. The marginal utility of consumption is given by equa-

tion (16). Equation (17) states that total in-migration equals total out-migration.

17In our calibration 0 < θ + γ < 1 which implies there is a fixed factor in intermediate good
production that is constant (equal to one) across cities. One interpretation of this fixed factor
is that it represents commercial land. Under this interpretation commercial land cannot be
converted into residential land and vice versa.

18See the online technical appendix for a proof of this claim. We describe how we solve the
model in Appendix F.
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Equation (18) defines the rental rate for equipment. The last side condition (19)

determines steady state undirected migration. It turns out to be identical to the

first order condition for Λ in the static model.

The function ξ (z) in (19) represents the value to the city planner of bringing

an additional individual to the city. It is integral to migration’s determination in

the model and can be shown to satisfy

ξ(z) = Cφ [ny (z) + nh (z)]π (π − 1) p (z)−π + CH ln

(
h (z)ς br (z)1−ς

p (z)

)
− CH

+ β

∫ (
CA

[
a (z′)

p (z)

]2

+ Cψ2

[
l (z′)

p (z)

]2

+ Λ [ξ(z′)− η] + ξ(z′)

)
dQ(s′; s, s−1).

(20)

The value of bringing an additional worker to a city comprises four terms: the ben-

efits of obtaining a better selection of worker disutilities given the same amount

of total employment ny + nh; the benefits of the local housing services that the

additional person will enjoy; the costs of reducing housing services for everybody

else; and the expected discounted value of starting the following period with an

additional person. This last term includes the benefits of having an additional

person producing guided trips to the city, the benefits of obtaining a better se-

lection of location-taste shocks, and the benefits of attracting additional people

to the city through undirected migration.

If a(z) = l(z) = 0 never occurs in equilibrium, then using the first order

conditions of the city-planner’s problem one can show that

λξ (z) =

 A
[
a(z)
x

]
+ λη, if a (z) > 0,[

ψ1 − ψ2

(
l(z)
x

)]
+ λη, if l (z) > 0.

(21)

Comparing equation (21) to the first order conditions for a(z) and l(z) in Section
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3’s static model we see that if gross migration rates are positive then the shadow

value of a migrant is related to migration costs as in the static model. When

there are no migration frictions, A = ψ1 = ψ2 = 0, equation (21) implies that

the marginal value of bringing an additional individual to a city is equated across

cities, ξ(z) = η, ∀z. However, this does not imply that wages are equated across

cities. Instead, equation (20) says that the marginal savings in worker disutility

plus the marginal impact on the utility of housing services is equated. When in

addition to A = ψ1 = ψ2 = 0 housing structures are made perfectly mobile across

cities, the same condition is obtained because land remains immobile. Finally,

when land is also made mobile, then the marginal savings in work disutility and

the marginal utility of housing services are each equated across cities.

5. Calibration

We now calibrate the steady state competitive equilibrium to U.S. data.19 Our

calibration has two important characteristics. First, the city-specific TFP process

is chosen to match the estimates presented in Section 2.2 thereby pinning down

the model’s exogenous source of persistence and volatility. Second, the calibration

targets for the remaining parameters involve features of the data that are not

primary to our study. So, for instance, we do not choose parameters to fit our

estimated response of population to a TFP shock. The model’s response of

population to a TFP shock is the consequence of the estimated TFP process and

the remaining parameters that are chosen to fit other features of the data.

In addition to specifying the stochastic process for TFP we need to find values

for 16 parameters:

θ, γ, α, ϑ, δk, δh, β,H, ζ, π, φ, ψ1, ψ2, A, τ, χ.

19Except where noted the aggregate data used to calibrate our model is obtained from Haver
Analytics.
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These include the factor shares in production and construction, depreciation rates

for equipment and structures, the discount factor, the housing coefficient in pref-

erences, land’s share in housing services, and the parameters governing labor

supply, migration, and intermediate goods’ substitutability.

We calibrate these parameters conditional on a given quantity of undirected

migration Λ determined by τ . For larger values of τ undirected migration is

relatively small so that a(z) > 0, ∀ z. In these cases the behavior of the model is

invariant to the specific value of τ . For smaller values of τ undirected migration

is large and a(z) = 0 for some z. In these cases the behavior of the model

is affected. It turns out that even for seemingly large steady state Λ corner

solutions for a(z) are either non-existent or extremely rare. We set our baseline

so that the undirected arrival rate is 3.8%, roughly 70% of all moves.20

The baseline calibration for the assumed value of τ is summarized in Table

1. There we indicate for each parameter the proximate calibration target, the

actual value for the target we obtain in the baseline calibration, and the resulting

parameter value. In the remainder of this section we discuss the calculations un-

derlying Table 1. We begin with the novel aspects of our calibration which involve

the parameters governing migration, the city-level TFP process, the elasticity of

substitution of intermediate goods, and labor supply.

5.1. Migration Parameters

Section 3.3 establishes that the migration parameters A, ψ1 and ψ2 are essential

for determining the speed of population’s adjustment to TFP shocks in the model.

Fortunately there is evidence at hand that makes assigning values to these pa-

rameters straightforward. First, conditional on a value for A reproducing Figure

20The specific value is τ = 1. For this value the baseline calibration has 0.3% of city-year
observations involving zero arrivals.
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2 pins down ψ1 and ψ2 via equation (10).21 In particular

ψ1

A+ ψ2

+
A

A+ ψ2

Λ = 5.5 and
ψ2

A+ ψ2

= 0.57.

Using the slope of the gross versus net migration relationship in Figure 2 to mea-

sure the migration cost parameters is similar to Gavazza, Mongey, and Violante

(2014) who identify parameters in a hiring cost function by relating them to the

slope of the log-linear relationship between the job filling rate and employment

growth at the firm level estimated by Davis, Faberman, and Haltiwanger (2013).

To identify A we take advantage of Kennan and Walker (2011)’s estimate of

the average net cost of migration for those who move. Specifically, we match the

statistic defined as the average net cost of migration of those who move divided

by average wages where we take the latter from Kennan and Walker (2011) as

well.22 It is straightforward to replicate their concept of moving costs in our

model. In Kennan and Walker (2011), net moving costs sum two components of

the utility flow of an individual in the period of a move. One component called

“deterministic moving costs” is a function of the distance of the move, whether

the move is to a location previously visited or not, the age of the mover, and the

size of the destination location. The second component is the difference between

idiosyncratic benefits in the current and destination location. We interpret the

cost of guided trips and undirected migration as representing the first component

and the location-taste shocks the second one. Consequently we measure average

21The constant term is the sample average gross migration rate. Calibrating to the average
the start or end of our sample leads to very similar results.

22Using Kennan and Walker (2011)’s estimates, average net moving costs of those who move
divided by average annual wages equal -1.9. This value equals the ratio -$80,768/$42,850. The
numerator is the entry in the row and columns titled ‘Total’ in Table V and the denominator is
the wage income of the median AFQT scorer aged 30 in 1989 reported in Table III. The negative
value of the estimate indicates that individuals receive benefits to induce them to move.
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moving costs of individuals who move as

∫
q(z)a(z) dµ+ CτΛ∫

a(z) dµ+ Λ
+

C
∫ (
−ψ1

l(z)
x

+ ψ2

(
l(z)
x

)2
)
xdµ∫

l(z)dµ
,

where q(z) is the price of a guided trip in the decentralization discussed in Ap-

pendix C. Average wages are simply∫
w(z) [ny(z) + nh(z)] dµ∫

[ny(z) + nh(z)] dµ
,

where wages in a type-z city, w(z), equal the marginal product of labor.

There are two potential drawbacks to using Kennan and Walker (2011)’s es-

timate of moving costs. First, they identify moving costs using individual-level

data. Since an individual’s location choice is not determined in the model we

cannot replicate their estimation strategy. Still, our model implies a value for

Kennan and Walker (2011)’s moving cost statistic so it is natural to take ad-

vantage of their estimates. Of more concern is that Kennan and Walker (2011)

estimate moving costs using data on the frequency of inter-state moves, while our

quantitative model describes inter-city moves. Inter-city moves are more frequent

than moves between states. Consequently it is possible that Kennan and Walker

(2011) would have estimated a different value for moving costs had they had data

on all inter-city moves, in which case we would be calibrating our model to the

wrong value. This suggests it is important to quantify the bias in Kennan and

Walker (2011)’s estimate. In Appendix E we study a calibrated variant of their

model and find that the bias is likely to be small.

5.2. TFP and Substitutability of City-specific Goods

The calibration of the substitution parameter χ and the stochastic process for

TFP are interconnected because χ is used to measure TFP. When we mea-
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sure TFP using the procedure described in Section 2.2 its growth rate is well-

represented as a stationary AR(1) process which is non-stationary in levels and

therefore inconsistent with a steady state. To overcome this we assume a reflect-

ing barrier process for TFP:

ln st+1 = max {g + (1 + ρ) ln st − ρ ln st−1 + εt+1, ln smin} . (22)

where εt+1 ∼ N(0, σ2), g < 0 and ρ > 0. With this process TFP growth is

approximately AR(1), while its level is stationary due to having a negative drift

and being reflected at the barrier ln smin (normalized to zero). The model’s

endogenous variables will appear to be non-stationary over samples of similar

length to our data.

Gabaix (1999) assumed ρ = 0 to explain the cross section distribution of cities

by population. In this case the invariant distribution has an exponential upper

tail given by

Pr [st > b] =
d

bω

for scalar parameters d and ω. A striking characteristic of cities is that when

s measures a city’s population one typically finds that ω ' 1. Equivalently a

regression of log rank on log level of city populations yields a coefficient close to -1.

This property is called Zipf’s law and so we refer to ω as the Zipf coefficient. The

case ρ > 0, which applies when TFP growth is serially correlated, has not been

studied before. Simulations suggest this case also has an invariant distribution

with an exponential-like upper tail. We verify below that a version of Zipf’s

law holds for TFP and so using the reflecting barrier process with ρ > 0 seems

justified.

Our calibration of χ and (22) proceeds as follows. For a given χ (and θ

and γ which are calibrated independently as discussed below) we measure TFP
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in the data following the procedure in Section 2.2, obtain its Zipf coefficient,

and estimate an AR(1) in its growth rate. We then find the g, ρ and σ to

match the Zipf coefficient and the parameters of the estimated AR(1) using data

simulated from our model and based on all of these parameters calculate the

model’s population Zipf coefficient. The calibrated value of χ is the one that

generates a population Zipf coefficient that is as close as possible to the one we

find in the data, 1.0. The best fit is at χ = 0.9 with a population Zipf coefficient

equal to 1.3. The corresponding values of g, ρ and σ are shown in Table 1.

Figure 5: Zipf’s laws for population and TFP
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Figure 5 demonstrates the model’s success at replicating the two Zipf’s laws

by plotting log rank versus log level for population and TFP with empirical and

simulated data.23 Log level of TFP is calculated using (4) without the first

23The left plot includes the top 200 cities by population in 1990. The right plot excludes the
lower 5% of cities to be comparable, and the top 5% due to the finite upper bound of the TFP
domain which introduces bunching in the right tail of the population distribution. We measure
rank in the model with cumulative distribution functions. TFP’s domain is narrower in the
model to reduce computational costs. The narrower domain does not matter for our calibration.
For example, the migration parameters are based on Figure 2 and Kennan and Walker (2011)’s
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difference operator. Notice that TFP’s Zipf coefficient is larger than population’s

in the data. This feature arises naturally in the model because population tends

to be allocated away from lower toward higher TFP cities. Equivalently, the

long run response of population to a TFP shock is larger than that of TFP.

Luttmer (2007) finds a similar relationship between employment and TFP in an

equilibrium model of firm size.

5.3. Labor Supply

Labor supply is determined by φ and π. The former is chosen to match the

ratio of civilian employment to population obtained from Census Bureau data

and the latter is chosen using the first order condition for labor supply. In the

model’s decentralization the representative household chooses labor supply in a

city to equate the disutility of working an additional household member to the

local wage. This implies:

(1− π) (∆n̂it −∆p̂it) + ∆ŵit = 0,

where n = ny + nh. Using the methods described in Section 2.2, we estimate the

dynamic responses of ∆n̂it, ∆p̂it and ∆ŵit to a local TFP shock and calibrate π

so that this equation holds in the period of a shock. This procedure places no

restrictions on the levels of the variables’ impulse responses. The resulting Frisch

elasticity, .25, is surprisingly close to micro estimates of the extensive margin

elasticity discussed by Chetty, Guren, Manoli, and Weber (2011).

estimate of migration costs. In the model the former does not depend on the level of TFP and
the latter depends on the distribution of TFP growth which is essentially independent of the
domain. Our quantitative analysis is based on growth rates and so is similarly independent of
the underlying domain.
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5.4. Remaining Parameters

The remaining parameters are calibrated similarly to studies based on the neo-

classical growth model. Several targets involve GDP and we measure this in the

model as

GDP = Y + I, (23)

where Y is output of non-construction final goods and I is residential investment.

Residential investment is measured as the value in contemporaneous consumption

units of the total additions to local housing in a year. Specifically,

I =

∫ [
β

∫
qh(z

′)dQ(s′; s, s−1)

]
nh(z)αkh(z)ϑbh(z)1−α−ϑdµ

where qh denotes the price of residential structures. This price is obtained as the

solution to the following no arbitrage condition

qh (z) = rh (z) + (1− δh) β
∫
qh (z′) dQ(s′; s, s−1)

where the rental price of residential structures, rh, equals the marginal product of

structures in the provision of housing services. The National Income and Product

Accounts (NIPA) measure of private residential investment is the empirical coun-

terpart to I. Our empirical measure of Y is the sum of personal consumption

expenditures less housing services, equipment investment and private business

inventory investment. Because our model does not include non-residential struc-

tures investment, government expenditures and net exports we exclude these from

our empirical concept of GDP.

Our measurement of model GDP and wages excludes the value of guided

trip services, which might be problematic. For example, workers produce guided

trips and in principle they should be compensated for this. We calculate the

total value of guided trips in our baseline calibration to be 1.8% of model GDP.
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The decentralization described in Appendix C suggests we can interpret guided

trips as encompassing many market and non-market activities. Some of these

activities appear in the national accounts as business services and therefore count

as intermediate inputs that appear only indirectly in measured GDP. Others

do not appear anywhere in the national accounts because they are essentially

home production or are impossible to measure. Fortunately, given its small size,

including the total value of guided trips in model GDP and wages does not change

our baseline calibration.

Measuring employment also is complicated by the fact that all household

members participate in generating guided trips. We count those agents engaged

in intermediate good production, ny, and residential construction, nh, as em-

ployed and measure their wages by their marginal products excluding the value

of guided trips. The non-employed who also produce guided trips are assumed to

be engaged in home production and so are not included in our accounting of em-

ployment. In Table 1 the labor share parameters are chosen to match total labor

compensation as a share of GDP (the target is borrowed from traditional real

business cycle studies) and our estimate of the share of residential construction

employment in total private non farm employment.24

We fix the discount rate so the model’s real interest rate is 4%. Combined

with this target the equipment-output ratio in the non-construction sector, Ky/Y ,

identifies equipment’s share in that sector’s production. Our empirical measure of

equipment for this calculation is the Bureau of Economic Analysis’ (BEA) mea-

sure of the stock of equipment capital. Equipment’s depreciation rate is identified

using the investment to GDP ratio, where we measure investment using the NIPA

estimate of equipment investment. Equipment’s share in residential construction

24We estimate housing construction employment by multiplying total construction employ-
ment by the average over our sample period of the nominal share of residential investment in
total structures investment expenditures.
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is identified by the ratio of capital employed in the residential construction sec-

tor, Kh, to GDP where the empirical counterpart to capital in this ratio is the

BEA measure of equipment employed in residential construction. The deprecia-

tion rate of residential structures is identified using the residential investment to

GDP ratio.25

We identify the housing service parameters as follows. First the housing

coefficient H is chosen to match the residential capital to GDP ratio, where the

measurement of residential capital is consistent with our measure of residential

investment described above. Land’s share in housing services, ζ, is chosen to

match the estimate of land’s share of the total value of housing in Davis and

Heathcote (2007). To measure this object in the model we need the price of land,

qb. We obtain this variable as the solution to the no-arbitrage condition

qb (z) = rb (z) + β

∫
qb (z′) dQ(s′; s, s−1),

where rb denotes the rental price of land which equals the marginal product of

land in the provision of housing services. Land’s share of the economy-wide value

of housing is then given by
∫
qbbrdµ/

[∫
qhhdµ+

∫
qbbrdµ

]
.

6. Quantitative Analysis

We now consider the model’s empirical predictions. First, we confirm that the

model accounts for population’s slow adjustment to TFP shocks and that this

success comes with generally accurate predictions for the other variables we study.

Next, we assess the model’s unconditional dynamics and find it is similarly suc-

cessful even though TFP shocks are the only source of fluctuations in the model.

25The depreciation rate for residential structures obtained this way is close to the mean value
of the depreciation-stock ratio for housing obtained from the BEA publication “Fixed Assets
and Consumer Durable Goods,” once output and population growth are taken into account.
Calibrating to this alternative value has virtually no impact on our quantitative findings.
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After establishing the empirical plausibility of our framework, we investigate how

migration and housing influence slow population adjustments.

6.1. Responses to Productivity Shocks

We estimate the responses to TFP shocks of population, gross migration, employ-

ment, wages, residential investment and house prices in both the model and the

data using the procedure described in Section 2.2, basing our model responses on

the simulation of a large panel of cities over a long time period. TFP is measured

the same way with model generated and empirical data.

Figure 6: Response of population
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Figure 6 displays model and estimated responses of population to a one stan-

dard deviation positive innovation to TFP. It demonstrates that the model’s pop-

ulation response is statistically and economically close to the one for the data.

In other words our model accounts for the slow response of city populations to

local TFP shocks. Note that the model is able to account for the unconditional

population distribution depicted in Figure 5 with a slow conditional response of
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Figure 7: Responses of arrival and departure Rates
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population to a TFP shock because ultimately the long run response of popula-

tion exceeds that for TFP.

Figure 7 shows this accounting for slow population adjustments involves repli-

cating the dynamic responses of the arrival and departure rates quite well. Cru-

cially the model is consistent with the negative conditional correlation between

the gross migration rates. The intuition for this finding is simple. Having mul-

tiple margins to respond to the increase in productivity, the city planner takes

advantage of all of them. It can raise employment per person and bring more

workers to the city. For the latter it can cut back on the fraction of the ini-

tial population that leaves for other cities and attract more workers with guided

trips. The goodness-of-fit is weaker for gross migration than it is for population.

Nevertheless given its simplicity the model does surprisingly well.

Figure 8 shows the dynamic responses of employment, wages, residential in-

vestment and house prices. We define house prices, qsf , as the total value of

structures and land used to produce housing services per unit of housing services
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Figure 8: Responses of labor and housing markets
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provided:

qsf (z) =
qh (z)h (z) + qb (z) bn(z)

h(z)1−ςbr(z)ς
.

The price qsf corresponds to the price of housing per square foot under the

assumption that every square foot of built housing yields the same quantity of

housing services.

The labor market responses are a very good fit. Observe that in both the

model and the data the initial employment response is stronger than population’s.

That is, the employment to population ratio rises after a positive TFP shock

indicating that the labor supply margin is indeed exploited in both the data and

the model. The responses of construction and housing are broadly consistent with

the data with the orders of magnitude about right. These findings derive from a

higher population desiring additional housing and an imperfectly elastic supply
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of new housing due to competing uses for the local labor needed to produce it.26

6.2. Unconditional Statistics

Our estimates of responses to TFP shocks are robust to the presence of other

shocks which are likely to be present in the data, for example shocks to local

taxes and amenities. However, if our model accounts for only a small fraction

of the total variation in the data we would be less confident in its predictions.

Consequently in Table 2 we display standard deviations, contemporaneous cor-

relations, and auto-correlations at the annual frequency in the model and in our

data. Standard deviations of all variables except population are expressed rela-

tive to the standard deviation of population and all contemporaneous correlations

are with population.

Table 2: Volatility, co-movement and auto-correlation within cities

Standard Auto-
Deviation Correlations Correlations

Variable Data Model Data Model Data Model
Population 1.35 0.87 – – 0.81 0.93
Arrival Rate 0.67 0.53 0.59 1.00 0.81 0.93
Departure rate 0.58 0.48 -0.47 -1.00 0.81 0.93
Employment 1.54 1.23 0.57 0.93 0.51 0.73
Wages 1.22 1.81 0.16 0.32 0.14 0.20
Res. Investment 20.5 4.27 0.09 0.40 -0.04 0.09
House Prices 3.03 2.32 0.28 0.47 0.69 0.07

Note: The statistics are based levels of the gross migration rates and on the
growth rates of the other variables. All variables have been transformed
as described in Section 2. Standard deviations of all variables except pop-
ulation are expressed relative to the standard deviation for population.
Correlations are with population.

Table 2 indicates that TFP shocks are a significant source of local variation:

the standard deviation of annual population growth in the model is about two

26Lloyd-Ellis et al. (2014) demonstrate that search frictions show promise in generating seri-
ally correlated responses of construction and house price growth to productivity shocks.
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thirds of that in the data. The model is strikingly successful at replicating the

qualitative pattern of relative volatilities and, with the exception of residential

construction, the magnitudes are about right as well. Correlations with popu-

lation growth are also similar in the model and the data.27 Finally, with the

exception of house prices, persistence in the model corresponds well with the

data. Notice in particular that the gross migration rates and population growth

are identically auto-correlated in the data, just as they are in the model. This

correspondence reflects the linear relationship between gross and net migration

we have uncovered in the data and have built into our model.

While Table 2 displays persistence at the annual frequency much of the litera-

ture focuses on longer run persistence. For example Blanchard and Katz (1992),

Glaeser et al. (1995) and Rappaport (2004) report highly persistent 10-year pop-

ulation and employment growth. In our data the auto-correlations of 10-year

population and employment growth are .88 and .65, respectively. In our model

the corresponding correlations are .63 and .58. Evidently our model generates

almost as much long-run persistence in population and employment growth as

we find in the data. This is important for understanding our model’s success at

accounting for persistent urban decline discussed below.

6.3. The Source of Slow Population Adjustments

We now disentangle the sources of slow population adjustments in our model.

To do so we consider several perturbations of the baseline calibration. In the

immobile housing only case we fix A = 0. When A = 0 the departure rate in

each city equals the constant value that minimizes departure costs and population

adjusts via costless changes in the arrival rate. Therefore in this case only the

27The largest discrepancies involve the arrival and departure rates being perfectly positively
and negatively correlated with population growth. Including a mechanism to reproduce Kennan
and Walker (2011)’s finding that out-migration is relatively high for recent in-migrants might
move the model in the direction of the data.
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factors inducing inelastic local housing supply impede population’s response to a

TFP shock. In the immobile housing, costly guided trips case we retain housing’s

immobility and set ψ1 = ψ2 = 0 so that costly guided trips are the only migration-

related impediment to population adjustments. Under perfect housing mobility

the local supply of housing is perfectly elastic at the economy-wide rental rate.

In this case only the migration costs impede population adjustments. The no

impediments case combines all of these perturbations so there are no migration

costs and housing is perfectly mobile.

Figure 9 displays population’s response to TFP shocks over 10 years for these

four perturbations along with the response implied by the baseline calibration.

In the no impediments case population’s initial response is almost 20 times the

baseline and it converges quickly to its new long run level, closely tracking TFP.28

Over an infinite horizon the response of population is pinned down by the size

of the TFP shock – in every perturbation population converges to the level it

reaches when there are no impediments to its adjustment. However it can take a

very long time to get there.

The population response under immobile housing only is substantially slower

than in the no impediments case, but it is far from the baseline and hence the data

as well. The discrepancy between the no impediments and the immobile housing

only cases arises from a property of adjustment costs highlighted by Abel and

Eberly (1994). They demonstrate that the first adjustment cost introduced to

an otherwise frictionless model always has a relatively large impact on dynamics

compared to when additional costs are introduced. The immobile housing, costly

guided trips case is quite close to the very slow baseline response: the costs of

28In the no impediments case aggregate consumption is about 5% higher than in our baseline
economy, while employment is about the same. This suggests that the combination of migration
costs and housing immobility can generate a substantial amount of labor mismatch in the
economy. See Sahin, Song, Topa, and Violante (2014) for an analysis of mismatch due to
search frictions in the labor market.
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Figure 9: Why is population slow to adjust to shocks?
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finding new cities to live and work have large effects even when housing is already

immobile.

These two perturbations suggest the slow baseline response requires both ad-

justment costs in housing and migration. However notice that the perfect housing

mobility case is very close to the baseline case. Essentially it is not necessary to

introduced inelastic local housing supply to get close to the data. This finding

suggests that migration costs are the prime driver of slow population adjust-

ments. Given the large impact of introducing costly guided trips when housing

is already immobile we infer that the costs associated with finding new cities to

live and work are the most important impediment to population adjustments.

The finding of slow population adjustments driven mostly by costly migra-

tion confirms and reinforces results in Kennan and Walker (2011). Using the

parameters of a migration choice problem estimated with data on the frequency

of inter-state moves, they calculate the optimal responses of individuals to a per-

manent wage change in one state. From these choices they obtain a matrix of
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transition probabilities from which they trace out the response of population in

the state with the permanent wage change. Strikingly, we find roughly the same

five-year elasticity of population with respect to the wage, about 0.5.29 In Ken-

nan and Walker (2011) about 30% of the five year response occurs in the first

year (see their Figure 1), whereas we find a response closer to 20%. The slower

response we obtain comes from wages taking several periods to reach their new

long run level compared to the immediate change in Kennan and Walker (2011).

Our slower wage response derives from the endogenous response of wages induced

by net in-migration. Figure 9 suggests that inelastic local housing supply is not

an important source of the difference. Overall our results establish that Kennan

and Walker (2011)’s findings are largely robust to the presence of inelastic lo-

cal housing supply and equilibrium interactions as well as considering migration

between cities instead of states.

6.4. Migration and Urban Decline

There are many cities which experience declining populations over the sample

period 1985-2007. This is evidence of the persistent urban decline studied by

Glaeser and Gyourko (2005). Interestingly, the cities with declining populations

also have relative TFP declining for most of the sample. The slow response of

population to TFP shocks in our model then suggests it might be able to account

for persistent urban decline. We now discuss a simple experiment to demonstrate

that indeed our calibrated model does account for persistent urban decline.

We focus on the 15 cities that experience the greatest population declines

in our sample. The corresponding TFP paths are fed into the model from the

common initial condition that takes the mid-point of our TFP grid and assumes

TFP stays at that level for a long time. Then we use the first 12 years of our

29Kennan and Walker (2011) consider a 10% increase in wages and find that population is
5% higher after five years. We find a 1.1% response of population to a 2% permanent increase
in the wage.
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Figure 10: Persistent urban decline
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sample, 1985 to 1997, to simulate unique initial conditions for each city based on

its empirical TFP path. This procedure builds in the possibility that past declines

in TFP show through into future population declines. For each city we calculate

the predicted path for log population starting in 1998, average over these paths

and compare the result to the same object constructed using the data.30

Figure 10 shows the average log paths for TFP and population for the data

and the model. TFP falls by .06 from 1998-2007 and population falls by twice as

much. The model’s predicted path for population lies very close to its empirical

counterpart. Obviously the fit is not as perfect for the individual cities, but the

general impression is similar. There are two key factors driving the model’s suc-

cess: persistent declines in TFP taken from the data and the very slow response

of population to past declines in TFP predicted by the model. The impact of

past TFP declines on current population is demonstrated by the faster rate of

population decline relative to TFP – in the short run population’s response to a

30For this experiment we equate our empirical measure of TFP to model TFP, s. We do
this for computational tractability but the small differences involved should not affect our
conclusions.
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TFP innovation is much smaller than TFP’s, but over longer horizons it responds

by much more.

Since the predominant source of slow population adjustment in the model is

the cost of finding new cities, we conclude that these costs are integral to our

model’s explanation of persistent urban decline. Durable and immobile housing

is not important at all in the sense that the intrinsic costs of migration essen-

tially account for slow population adjustments on their own. This contrasts with

Glaeser and Gyourko (2005) who argue that durable and immobile housing ex-

plains persistent urban decline.31 These authors do not integrate costly migration

into their empirical analysis. We consider both housing and migration costs in a

unified framework, but housing turns out to be relatively unimportant.

7. Conclusion

This paper documents that a city’s population adjusts slowly to near random-

walk TFP shocks and shows that empirically plausible inelastic local housing

supply and migration costs can explain why. We build a model that allows us to

disentangle the effects of housing and migration on urban population dynamics

and find that inelastic local housing supply plays a relatively limited role com-

pared to the intrinsic costs of migration and of the migration costs we consider

those associated with finding new cities in which to live and work are the most

important. We also show that our model can account for the persistence of urban

decline. Our modeling of migration and calibration of its intrinsic costs is not

arbitrary, but is dictated by the nature of the relationship between gross and net

migration that we uncover and the microeconomic evidence.

31They show that irreversible housing in declining cities has several empirical predictions
which they verify. Our model does not share these predictions since the irreversibility constraint
is never binding. This is due to the small variance of TFP innovations compared to housing’s
depreciation rate. The constraint does not bind in our data either as new building permits are
always strictly positive. It presumably binds for neighborhoods within a city and this might
explain Glaeser and Gyourko (2005)’s findings.
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Our model has left out interesting features that are undoubtedly important

for understanding the full range of adjustment to shocks within and across cities.

For example we have abstracted from search frictions in local labor and housing

markets. We think it would be interesting to add these features to our frame-

work. Doing so would help disentangle the contributions to labor reallocation of

traditional search from the migration frictions we introduce. For example, local

housing and labor search frictions might play a role similar to the migration fric-

tions in our framework. It remains to be determined whether these frictions can

account for the empirical relationship between gross and net migration and the

slow response of population to TFP shocks that we uncover.

We abstracted from secular decline in rates of gross migration as well. While

our model is able to explain persistent urban decline as the slow response of

population to declines in local TFP, it is possible that this mechanism interacts

with others that have been proposed to explain the trend. Understanding whether

such an interaction exists seems worth exploring in future research.
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Appendix

(For online publication)

This appendix describes how we calculate gross migration flows using IRS data
and our sources for the other data used in our analysis; the robustness of our
empirical estimates and the evidence on multi-year migration discussed in the
main text; one possible decentralization of the migration problem; why housing
influences urban population dynamics; how we quantify the bias in using migra-
tion costs based on inter-state migration in a model of inter-city migration; and
the methods used to solve the quantitative model.

A. Data

This section describes our data sources for our panel data on Metropolitan Sta-
tistical Areas (MSAs). The mappings of counties to MSAs we use are consistent
with the definitions given by the U.S. Office of Management and Budget (OMB)
as of December, 2009. As of that time, OMB defined 366 MSAs in the United
States. Over our sample period, these MSAs account for about 80 percent of the
aggregate population. We exclude all data from the New Orleans MSA from our
study because of the disruption caused by Hurricane Katrina in 2005.

A.1. Calculating Gross Migration Flows with IRS Data

We construct data on gross MSA-level population inflows and outflows using
county-to-county migration data based on tax records that is constructed by
the Internal Revenue Service (IRS). These data are available annually from 1990
onwards on the IRS web site and are available from 1983 through through 1992 at
the Inter-University Consortium for Political and Social Research (ICPSR) web
site. The data cover the “filing year” period, not calendar year. For example,
the data for 2007 approximately refer to migration over the period April, 2007 to
April, 2008. The beginning of the sample period for all our data is 1985, dictated
by the availability of the IRS data. We do not use IRS data that is available
prior to 1985 because counties are not identified by FIPS codes in these years.

For each year, the IRS reports the migration data using two files, one for
outflows and one for inflows. These files cover the experience of each county in
the United States. Both the inflow and the outflow files report migrants in units
of “returns” and in units of “personal exemptions.” According to information
from the IRS web site, the returns data approximates the number of households
and the personal exemptions data approximates the population.32 We use the
exemptions data.

32See http://www.irs.gov/taxstats/article/0,,id=212683,00.html for details.
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We define gross inflows into an MSA as the sum of all migrants into any
county in that MSA, as long as the inflows did not originate from a county
within the MSA. Analogously, we define gross outflows from an MSA as the sum
of all migrants leaving any county in that MSA, as long as the migrants did
not ultimately move to another county in the MSA. We exclude people migrating
into- and out of the United States. But otherwise, for gross inflows the originating
counties are not restricted to be part of one of the 365 MSAs, and for gross
outflows the counties receiving the migrants are not restricted to be included in
one of the 365 MSAs. Over our sample period, counties inside MSAs slightly
increased in population, on-net, relative to counties outside of MSAs.

Define Ait as the number of new entrants to MSA i during year t, Lit as the
number of people exiting, and P̄t as all the people that did not move in or out.
We compute the beginning of year population Xit and end of year population Pit
as

Xit = P̄it + Lit

Pit = P̄it + Ait

Net migration in MSA i during year t is therefore Pit − Xit = Ait − Lit. Note
that due to births and deaths and foreign migration, Pit is typically less than the
beginning of year population in the subsequent year, Xit+1. The corresponding
gross arrival rate, gross departure rate and net migration rate are defined as

ait =
Ait
Xit

(A.1)

lit
Lit
Xit

nit = ait − lit. (A.2)

A.2. Other data

Employment and wages are derived from Table CA4 of the “Regional Economic
Accounts: Local Area Personal Income and Employment” as produced by the
Bureau of Economic Analysis (BEA). The population data (line 20) are mid-year
estimates from the Census Bureau. For employment, we use “Wage and Salary
Employment,” line 7020. These are counts of full- and part- time jobs of salaried
employees. We construct nominal average wage per job, “wages”, as the sum
of total wage and salary disbursements, line 50, and supplements to wages and
salaries, line 60, divided by wage and salary employment.33 Since our detrending

33The BEA also reports a broader measure of employment called “total employment” (line
7010) but this is the sum of Wage and Salary Employment and Proprietors Employment (line
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removes time effects, we do not adjust wages for overall inflation.
For house prices, we use the repeat-sales house price indexes produced by

the Federal Home Finance Agency (FHFA) and available for download on that
agency’s web site. These data are quarterly; for each MSA, we construct an
annual estimate as the average of all non-missing quarterly observations. For 11
larger MSAs, the FHFA does not report an MSA-level index but rather a set of
indexes corresponding to divisions within the MSA. For these MSAs, we set the
level of the index for the MSA equal to the average of the reported indexes for the
underlying divisions. All MSAs have price-index data starting in 2001, but prior
to that the time span of coverage varies by MSA. Table A.1 lists the number of
MSAs with house price data we use in our study, by year

Table A.1: Number of MSAs for house price and residential investment data

Year Number of MSAs Year Number of MSAs
1985 201 1997 364
1986 225 1998 364
1987 284 1999 364
1988 308 2000 364
1989 316 2001 365
1990 325 2002 365
1991 330 2003 365
1992 345 2004 365
1993 353 2005 365
1994 361 2006 365
1995 363 2007 365
1996 364

The house price data are nominal indexes but this is unimportant as we log
and first-difference the data, removing a scale factor that would covert the index
to a level. What might be more important is the fact that the sample of MSAs
changes over time and our detrending removes each year’s cross-sectional average
value (the “hat” from Section B.1 below.) Consider, as an example, a scenario
where there are 5 MSAs used to compute an average for a few years, and then
a 6th MSA is added to the sample. Consider only the original 5 MSAs. It is
possible that the value of each of these MSAs relative to the average of the 5
original MSAs did not change; but, once the 6th MSA joins the sample, the value

7040). In CA4, Proprietors Income (line 70) is associated with Proprietors Employment. Since
Proprietors Income includes some capital income, we use the narrower measures of employment
and compensation in our study.
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relative to the new average inclusive of the 6th MSA changes. We checked for
this possibility by restricting cohorts of MSAs to be fixed over time at the entry
year when computing sample averages. Referring to the previous example, for the
original 5 MSAs, the sample average would always only be computed using those
5 MSAs; and, for the new 6th MSA, going forward the sample average would
always only be computed using all 6 MSAs. This adjustment did not change any
of our results for house prices or residential investment (see below), and so we
chose the straightforward rule to always use all data.

To construct an estimate of residential investment, we use data on housing
permits and house prices. County-level data on housing permits are available
from 1980-2009 as part of the “State of the Cities Data System” available on
the Department of Housing and Urban Development Web Site. We aggregate
the county-level permits data to the MSA-level using the 2009 MSA definitions.
We generate MSA-level indexes of nominal residential investment by multiplying
the MSA-level house price indexes described earlier and building permits. This
calculation yields the value of new housing. But, given we log and first difference
the data, it also yields the relevant value for residential investment assume the
share of new housing attributable to land is constant over time. Since we use
house prices to construct residential investment, the number of observations by
year is the same as for housing (see Table A.1) and all the caveats for the house
price data apply here as well.

B. Detailed empirical analysis

This appendix develops our findings about inter-city migration in more detail;
shows how the choice of sample period affects our results; demonstrates our find-
ings for multi-year migration; and shows that our key findings about inter-city
migration extend to state-level data.

B.1. Effects of year and city variation on inter-city migration

Figure B.1 shows a scatter plot of raw arrival and net migration rates for all
city-year observation in our baseline 1985-2007 sample. This plot is difficult to
interpret because of the presence of a secular trend in gross migration and because
there are systematic differences in gross migration rates depending on the size of
the city (see Figure 1) and likely other factors, such as those considered by Coen-
Pirani (2010), as well. It turns out that not taking into account these factors,
particularly the city fixed effects, has a substantial impact on how the migration
data is interpreted.

Figure B.2 shows the trends in gross migration. The observations for each
year correspond to the cross-city average of the indicated gross migration rate,
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Figure B.1: Raw city-level arrival versus net migration rates, 1985–2007
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z̄t for z = a, l, where

z̄t =
N∑
i=1

zit

and N denotes the total number of MSAs in our data. In our data the average
arrival rate always exceeds the corresponding departure rate because there is net
in-migration to the cities in our sample from counties outside these cities and we
include all US counties in our gross migration measures (see Appendix A.1).

Note that while the gross inter-city trends depicted in Figure B.2 are qualita-
tively consistent with the trends in gross inter-state migration studied by Kaplan
and Schulhofer-Wohl (2015) the concepts underlying their measurement are a
little different. Kaplan and Schulhofer-Wohl (2015) measure the likelihood that
an individual drawn randomly from the entire population, regardless of location,
will move (or have moved) to (from) another location (in their case state) in a
given year. Our measure is the average across locations (in our case cities) of the
likelihood that a person randomly drawn from a particular location will move
(or have moved) to (from) another location. Population-weighted averages of
location-specific gross rates would correspond to the concept studied by Kaplan
and Schulhofer-Wohl (2015).

The trends evident in Figure B.2 suggest that time-series variation might
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Figure B.2: Average city-level gross migration rates, 1985–2009
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Figure B.3: Pooled arrival and net inter-city migration rates after removing year
fixed effects only, 1985–2007
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Note: Arrival rates correspond to ãit and net migration rates correspond to ñit. See the text
for the definition of these variables.
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confound our interpretation of the data. We remove year effects as follows

ãit = ait − āt

and
ñit = ãit − l̃it

where l̃it is defined analogously to ãit. Figure B.3 is a scatter plot of ãit versus ñit.
It appears that subtracting year effects alone has little impact on the relationship
between arrival and net migration rates.

Figure B.4: Pooled arrival and net inter-city migration rates after removing year
and city fixed effects, 1985–2007

-5
0

5
10

15
A

rr
iv

al
 R

at
e

-10 -5 0 5 10 15
Net Migration Rate

Note: Arrival rates correspond to âit and net migration rates correspond to ĝit. See the text
for the definition of these variables.

Figure B.4 shows the importance of removing city fixed effects in gross mi-
gration. This figure depicts a scatter plot of âit versus n̂it where

âit = ãit −

∑T
τ=1

(
ãiτ + l̃iτ

)
2T

+

∑T
τ=1

(
āτ + l̄τ

)
2T

(B.1)

and
n̂it = âit − l̂it. (B.2)

The departure rate l̂it is defined analogously to âit. The specification of âit sub-
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tracts the year fixed effect āt and the city fixed effect
∑T

τ=1

(
ãiτ + l̃iτ

)
/ (2T ) from

the raw arrival rate ait and adds back the time-city mean of the average gross
migration rates. Note that by specifying the city fixed effect as the mean of the
time-series averages of the two gross migration rates (rather than the an arrival-
or leaving-rate-specific fixed effect) ensures that we do not take out a city fixed
effect in the net migration rate. Since Gibrat’s law, which says population growth
rates are independent city size, holds in our data there should not be a city fixed
effect in net migration. Transforming the data in this way is also consistent with
our model which satisfies Gibrat’s law as well.

Figure B.4 reveals that, once city and year fixed effects are taken into account,
there is a tight positive relationship between arrival and net migration rates.
The red line shows the OLS fitted values. The individual observations line up
remarkably well with the OLS regression line. Clearly not removing city fixed
effects confounds within and cross-city variation. Cross-city gross migration rates
tend to move together, due, at least in part, to the city-size effect. Figure B.4
strongly suggests that at the city level they tend to move in opposite directions
because the slope of the OLS line is less than 1 (see below). Only by removing
the city fixed effect does this pattern become apparent. Note that this pattern
is evident when we consider the cities individually after removing year effects.
In city-specific regressions of arrival rates on net migration rates, 86% of the
coefficients lie between 0 and 1.

Table B.1 summarizes our findings thus far. It displays coefficients from re-
gressions of arrival rates on net migration rates not taking into account any fixed
effects (ait versus nit), accounting for year fixed effects only (ãit versus ñit) and
accounting for both year and city fixed effects (âit versus n̂it). Both ordinary
least squares (OLS) and least absolute deviations (LAD) or median regression
estimates are shown. A coefficient greater than 1 would indicate that changes
in net migration occur with changes in gross migration in the same direction,
but with the arrival rate changing by more than the departure rate. Another
possibility is that all changes in net migration occur along the arrival margin.
This would be the implication of a coefficient insignificantly different from 1. A
coefficient between 0 and 1 indicates that increases in net migration occur with
arrival rates increasing and departure rates decreasing.

Consistent with the Figures B.1, B.3 and B.4, Table B.1 shows that consider-
ing the raw data or only taking into account year fixed effects leads to strikingly
differently conclusions compared to if city fixed effects are accounted for. In the
first two cases the OLS estimates are insignificantly different from 1. Mitigating
the impact of outliers using LAD estimation changes this conclusion. The coeffi-
cients are significantly larger than 1 in these cases which indicates that both the
arrival rate and departure rate margins are involved in variation in net migration
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Table B.1: Impact of including year and city fixed effects, 1985–2007

Coefficient
Fixed effects included OLS LAD

No fixed effects .83∗∗∗ 1.19∗∗∗

(.12) (.04)

Obs. 8395 8395
R2 .18 .18

Year fixed effects only .83∗∗∗ 1.18∗∗∗

(.12) (.03)

Obs. 8395 8395
R2 .18 .18

Year and city fixed effects .56∗∗∗ .56∗∗∗

(.007) (.008)

Obs. 8395 8395
R2 .66 .66

Note: Coefficients from regressions of arrival rates on net migration rates. Superscript ∗∗∗ indi-
cates statistical significance at the 1 percent level. Standard errors are clustered by MSA. OLS
denotes ordinary least squares and LAD denotes least absolute deviations (median regression).

but that these margins move in the same direction – net migration increases by
both arrival and departure rates increasing, but arrival rates increasing by more.
This is consistent with the positive correlation highlighted in Coen-Pirani (2010).

In the last panel we see that accounting for both year and city fixed effects
changes our view about the nature of net migration. The coefficient is the same
regardless of estimation method and in both cases equals 0.56 with a small stan-
dard error. These results suggest that increases in net migration within a city
arise from increases in the arrival rate and decreases in the departure rate. Notice
as well that the R2 in these cases is much larger than if city fixed effects are not
removed from the data – within cities there is a tight relationship between gross
and net migration.

B.2. Alternative sample periods

We chose 2007 as the endpoint of our baseline sample because it is the last
year before the collapse of the housing market. There is a substantial body of
evidence, surveyed and built on in Modestino and Dennett (2013), that suggests a
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discrete change in gross migration occurred in the years immediately following the
housing bust. The conventional explanation for this finding is that homeowners
were unwilling to realize losses on their houses and so at the margin were less
willing to move than would otherwise be the case. Since our model does not
include this mechanism we think it is appropriate to exclude these data.

Still, we have data on migration running through 2009 so it is worth inves-
tigating the impact of adding the post-housing-bust years to our sample. While
we are not aware of evidence suggesting the housing boom was related to unusual
propensities to migrate it is possible that it was. This motivates considering
the implications of ending our sample before the housing boom. Therefore now
we consider the impact on our main findings of two alternatives to our baseline
1985–2007 sample: 1985–2004 and 1985–2009.

Table B.2: Inter-city migration estimates for different samples and estimation
methods

Coefficient
Sample Period OLS LAD

1985–2007 .56∗∗∗ .56∗∗∗

(.007) (.008)

Obs. 8395 8395
R2 .66 .66

1985–2004 .55∗∗∗ .56∗∗∗

(.006) (.007)

Obs. 7300 7300
R2 .69 .69

1985–2009 .57∗∗∗ .58∗∗∗

(.008) (.008)

Obs. 9125 9125
R2 .65 .65

Note: Superscript ∗∗∗ indicates statistical significance at the 1 percent level. Standard errors
are clustered by MSA. OLS denotes ordinary least squares and LAD denotes least absolute
deviations (median regression).

Table B.2 shows that estimates of the relationship between gross and net
migration (after accounting for year and city fixed effects) are not materially
impacted by the sample period chosen. The first panel reproduces the results
from the bottom panel of Table B.1, our baseline estimates. The bottom two

60



Figure B.5: Responses of population and productivity based on different sample
periods

0
1

2
3

P
er

ce
nt

ag
e 

P
oi

nt
s

1 2 3 4 5 6 7 8 9 10
Year

Productivity, 2007 Productivity, 2004 Productivity, 2009
Population, 2007 Population, 2004 Population, 2009

Note: Findings based on three sample period: 1985–2007, 1985–2004 and 1985–2009. Point
estimates along with 2 standard error bands for population based on the 1985–2007 sample.

panels reveal that we get almost identical results with the shorter and longer
sample periods.

Figures B.5, B.6 and B.7 display our baseline impulse response functions,
considered in Sections 2.2 and 6.1, along with estimates corresponding to the two
alternative samples. Except for the migration responses these plots indicate there
is little effect of sample period on the estimates. Generally the responses for the
shorter and longer samples fall within the 95% confidence bands associated with
the baseline sample. When they do not fall within the confidence interval they
do not miss by enough to overturn our conclusions that the model does a good
job replicating the observations that were not directly targeted in the calibration.
This also is true in the case of the migration responses for the shorter sample
– excluding the housing boom as well as the housing bust does not change our
conclusions.
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Figure B.6: Responses of labor and housing market variables based on different
sample periods
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Note: Findings based on three sample periods: 1985–2007, 1985–2004 and 1985–2009. Point
estimates along with 2 standard error bands based on the 1985–2007 sample.

The longer sample migration responses, however, are significantly different
from the baseline. Interestingly they are different in a way that confirms the
empirical evidence reviewed and introduced in Modestino and Dennett (2013).
To the extent that the housing bust deterred households from moving from their
homes, its primary effect would be on the out-migration margin. Consistent with
this hypothesis Figure B.7 shows that including the housing bust years in the
sample period drives the departure rate response toward zero and the arrival rate
away from zero. That is, during the housing bust net migration adjustments
at the city-level occurred more on the arrival margin than the leaving margin
compared to the pre-housing-bust period. Nevertheless the qualitative pattern
is unaffected: it remains true regardless of sample period that net migration in
response to productivity shocks adjusts by movements of arrival and departure
rates in opposite directions.
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Figure B.7: Responses of arrival and departure rates based on different sample
periods
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Note: Findings based on three sample periods: 1985–2007, 1985–2004 and 1985–2009. Point
estimates along with 2 standard error bands based on the 1985–2007 sample.

B.3. Multi-year migration

In the main text we demonstrate that our model implies an affine relationship
between ait+s and nit+s. Summarize this relationship, shown in equation (10), as

ait+s = α + λnit+s, (B.3)

where λ and α should not be confused with parameters used in the main text (see
equations A.1 and A.2 in Appendix A for the definitions of ait and nit). Denote
by git,t+s the gross growth rate of the population in MSA i from t to t+ s:

git,t+s =
Xit+s

Xit

(B.4)
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and multiply each term in equation (B.3) by git,t+s:

ait+sgit,t+s = αgit,t+s + λnit+sgit,t+s.

Since this equation holds for any s, it holds for the sum over s for s = 0, 1, . . . τ−1.
Therefore

τ−1∑
s=0

ait+sgit,t+s = α
τ−1∑
s=0

git,t+s + λ

τ−1∑
s=0

nit+sgit,t+s. (B.5)

The left-hand side of equation (B.5) has the interpretation of an arrival rate for
a period of length τ years since

τ−1∑
s=0

ait+sgit,t+s =

τ−1∑
s=0

Ait+s

Xit

Similarly, the term with λ in front equals the net-migration rate for a period of
length τ years. Thus, our model implies a linear relationship between arrival rates
and net migration rates for periods of any length in years with a slope coefficient
that is identical to the slope coefficient for the one year horizon.

We can use this prediction to test the linearity hypothesis embedded in equa-
tion (B.3). To do this we estimate (B.5) for different values of τ and test the
equality of the slope coefficients. To estimate equation (B.5), we first detrend
ait+s, git+s and nit+s. We detrend ait+s and nit+s using equations (B.1) and (B.2).
The detrended value of the gross population growth rate git,t+s, ĝit,t+s, is given
by

ĝit,t+s = 1 + git,t+s −
N∑
i=1

git,t+s

That is the detrended gross population growth rate between years t and t + s
equals the gross population growth rate minus the average rate of gross population
growth from t to t+ s across all MSAs plus 1. We use the BEA population data
to calculate these population growth rates.

Define

âτt =
τ−1∑
s=0

âit+sĝit,t+s − ᾱ
τ−1∑
s=0

ĝit,t+s

n̂τt =
τ−1∑
s=0

n̂it+sĝit,t+s,
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where ᾱ equals the unconditional mean one-year gross migration rate from our
data. We test the linearity hypothesis as follows. First we obtain the slope
coefficients λ̄τ obtained from OLS regressions of âτt on n̂τt (λ̄1 = λ̄ = .56 is
our estimate of the one year slope.) Second, we test the equality of the slope
coefficients at different horizons, that is we test whether λ̄τ = λ̄ for different
values of τ .

Our estimates of λτ for various values of τ are reported below in Table B.3,
along with robust standard errors (clustered at the CBSA level) and R2 values.
The estimate of λτ hardly changes as we increase period length from one year
(τ = 1) to five years (τ = 5). We cannot reject the hypothesis that the coefficients
are identical at the 5% level.

Table B.3: Multi-year migration estimates for different horizons

τ λτ R2

1 .56∗∗∗ .68
(.007)

2 .56∗∗∗ .70
(.006)

3 .56∗∗∗ .72
(.006)

4 .55∗∗∗ .74
(.006)

5 .55∗∗∗ .75
(.007)

Note: Superscript ∗∗∗ indicates statistical significance at the 1 percent level. Standard errors
are clustered by MSA.

It is instructive to present plots analogous Figure 2. To so we bin our data
by deciles of the τ -year migration rates n̂τt and compute the mean net migration
rate, n̂τt , and the mean arrival rate, âτt , for each bin. We also compute the mean
τ -year departure rates where these departure rates are defined analogously to
âτt . Figures B.8 and B.9 plot the mean gross migration rates versus mean net
migration rates by decile for τ = 3 and τ = 5. In these plots we have rescaled the
gross migration rates by their corresponding unconditional means (17% for τ = 3
and 28.5% for τ = 5. Note that the slope coefficients are slightly different from
the corresponding ones in Table B.3 since they are based on regressions using the
binned data. These plots are strikingly similar to Figure 2.
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Figure B.8: Gross migration rates by net Migration for τ = 3
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Figure B.9: Gross migration rates by net migration for τ = 5
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B.4. Gross and net inter-state migration

We now use three different data sources to demonstrate that our main findings
for inter-city migration also hold for inter-state migration. Inter-state migra-
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tion can be calculated using the IRS data by replacing cities with states in the
methodology outlined in Appendix A.1. The March Supplement to the Current
Population Survey (CPS) and the American Community Survey (ACS) also have
information that can be used to calculate one-year gross and net inter-state mi-
gration. The samples in these latter two surveys are too small to study enough
cities to provide a reliable view of inter-city migration.

Figure B.10: Gross and net inter-state migration rates by population decile
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In addition to verifying that the migration patterns we uncover are present
in inter-state data as well, by comparing the IRS, CPS and ACS data on inter-
state migration we can verify that the three data sources provide similar views of
migration along the dimensions we are interested in. This is helpful because each
data-set has their own idiosyncracies (see Kaplan and Schulhofer-Wohl (2015)
and that paper’s online appendix) and our results are more compelling if they
are not just a feature of the IRS data we focus on.

We have CPS data covering the baseline sample period 1985-2007 (excluding
1995 because the CPS did not measure one-year migration that year) and ACS
data for the period 2001-2007. In all cases we exclude Louisiana (due to Hurricane
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Figure B.11: Gross and net inter-state migration rates for all year-state observa-
tions
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Katrina). Including the District of Columbia we have migration data for 50
“states” per year.

Figure B.10 displays the inter-state version of Figure 1 for each data-set. It
demonstrates that gross inter-state migration is diminishing in the population of
a state, just as gross inter-city migration is diminishing in the population of a city.
This means that the relationship between inter-state gross and net migration will
be confounded by cross-state variation.

Figure B.11 shows scatter plots of arrival and net migration states for all
year-state observations in each data-set after removing year and state fixed ef-
fects. These data are defined analagously to âit and n̂it for cities. This figure
demonstrates that all three data-sets display tight connections between arrival
and net migration rates that are similar to the relationship we found for inter-city
migration.

Figure B.12 plots the inter-state migration analogue of Figure 2 for each data-
set. It shows that the striking linear relationship between gross and net migration
that is present in inter-city migration is also present in inter-state migration.
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Figure B.12: Gross versus net inter-state migration rates
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Specifically, the arrival and net migration rates averaged by net migration decile
line up almost exactly on the OLS regression lines in all three data-sets.

Table B.4 displays OLS and LAD estimates of linear regressions of inter-state
arrival rates on net migration rates for the three data-sets over the longest sample
period available for each data-set and for the longest sample period common to
all three data-sets. This table shows that in all cases the coefficients lie between
0.34 and 0.53 and have confidence intervals far within the range (0, 1). In other
words the conclusion that increases in inter-city net migration occur via increases
in arrival rates and decreases in departure rates extends to inter-state migration.

C. One Possible Decentralization of the Static Model

Decentralizing the static model’s planning problem is useful for calibrating the
quantitative model. The key challenge involved is how to treat guided trips. One
valid approach is to have guided trips allocated entirely within the household
through home production without any market interactions. We view guided trips
in the model as an amalgam of both market and non-market activities and so we
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Table B.4: Gross arrival versus net inter-state migration rates

Longest Sample 2001–2007

Data source OLS LAD OLS LAD

IRS .53∗∗∗ .53∗∗∗ .35∗∗∗ .35∗∗∗

(.01) (.01) (.05) (.04)

Obs. 1150 1150 350 350
R2 .77 .77 .47 .47

ACS .45∗∗∗ .49∗∗∗ .45∗∗∗ .49∗∗∗

(.03) (.02) (.03) (.02)

Obs. 350 350 350 350
R2 .66 .66 .66 .66

CPS .37∗∗∗ .41∗∗∗ .34∗∗∗ .34∗∗∗

(.03) (.03) (.03) (.05)

Obs. 1100 1100 350 350
R2 .49 .49 .36 .36

Note: Superscript ∗∗∗ indicates statistical significance at the 1 percent levels. Standard errors
are clustered by state. OLS denotes ordinary least squares and LAD denotes least absolute
deviations (median regression). The IRS and CPS longest samples are both 1985–2007; the
longest sample for the ACS is 2001–2007.

think a more natural approach involves both activities. We now consider such a
decentralization.

Markets are competitive. Firms in a city of type z hire labor at wage w(z) and
produce consumption goods to maximize profits. Household members initially
located in a type-z city produce am(z) guided trips to that city which they sell
to prospective migrants at price q(z). The household also home produces guided
trips, denoted by ah(z). Let m(z) denote the total number of guided trips to
z-type cities purchased by household members in the market.

The representative household solves the following optimization problem

max
{C,Λ,m(z),
am(z),ah(z),
l(z),p(z)}

{lnC −
∫ [

A

2

(
am (z) + ah(z)

x

)2

x
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+

(
−ψ1

l (z)

x
+
ψ2

2

(
l (z)

x

)2
)
x

]
dµ− τΛ

}
(C.1)

subject to:

C +

∫
q (z)m(z)dµ =

∫
q (z) am(z)dµ+

∫
w (z) p(z)dµ+

∫
Π(z)dµ(C.2)

p (z) = x+m (z) + ah(z) + Λx− l (z) , ∀z (C.3)∫
l (z) dµ =

∫
[m (z) + ah(z) + Λx] dµ (C.4)

along with non-negativity constraints on the choice variables. Equation (C.2)
is the household’s budget constraint where Π denotes profits from owning the
firms. Equation (C.3) states that the population of a city after migration equals
the initial population plus migrants from guided trips and undirected migration
less the initial population that migrates out of the city. Finally, equation (C.4)
states that the household members that migrate to cities must equal the number
of household members that migrate out of cities.

The unique competitive equilibrium is defined in the usual way. Using the
market clearing condition m(z) = am(z) and the first order conditions of the
household’s problem we verify that a competitive equilibrium only determines
the total number of guided trips into a city, am(z) + ah(z). The composition of
these guided trips between market and non-market activities is left undetermined.

This particular decentralization makes it possible to calculate the total value
of guided trips. In particular, as long as there are some guided trips purchased in
the marketplace their total value is given by q(z)a(z), with a(z) = am(z) + ah(z)
and q(z) = CAa(z)/x.

D. Urban Population Dynamics with Housing

We expect housing to influence urban population dynamics for the reasons stated
in the introduction: it is costly to build quickly, durable and immobile. Here we
study a simple model to explain why these factors may be important. The model
borrows the geography and production structure from Section 3. There are three
differences with that model: individuals have a preference for housing services;
to emphasize the role of housing, the model excludes migration frictions; and to
study dynamics the model introduces infinitely lived households.

To analyze this simple model it is convenient to exploit the fact that the
unique stationary competitive equilibrium can be obtained as the solution to
a representative city planner’s problem that maximizes local net surplus tak-
ing economy-wide variables as given, where the economy-wide variables are con-
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strained to satisfy particular side conditions.34 Since here we are only interested
in the qualitative implications of housing we ignore the side conditions and study
the city planner’s problem assuming the economy-wide variables are exogenous.

Gross surplus in the representative city is given by

E0

∞∑
t=0

βt
{
stp

θ
t +H ln(

ht
pt

)pt

}
where E0 denotes the date t = 0 conditional expectations operator and 0 < β < 1
is the household’s time discount factor. Housing services are perfectly divisible
so that each individual in the city enjoys ht/pt units of housing services where ht
denotes the local housing stock. The total utility individuals in the city derive
from housing is given by H ln(ht/pt)pt, H > 0. The planner must give up η > 0
units of surplus for each individual it brings to the city and employs in the
production of consumption goods.

Within this framework we consider the speed of adjustment of population to a
one time permanent change to TFP. To be concrete, suppose the city is in a steady
state at t = 0 with s = s0 and then at date t = 1 it faces a one-time unanticipated
permanent change in TFP to s = s∗. We consider the adjustment of population
to this unanticipated change in TFP under three scenarios for housing.

In the first scenario the planner can rent housing services from other cities at
the exogenous price rh. This assumption is equivalent to assuming that housing
is perfectly mobile across cities. Equilibrium in this scenario is characterized by
the first order conditions for population and housing:

stθp
θ−1
t +H ln(

ht
pt

) = η +H; (D.1)

H
pt
ht

= rh. (D.2)

Condition (D.1) shows that population adjusts to equate the marginal benefit of
moving an additional individual to a city to the cost. The former is the sum of
the individual’s marginal product and housing services, while the latter includes
the shadow cost of not moving the individual to another city and the housing
services that are lost by the original inhabitants of the receiving city. The second
condition equates the marginal utility of an extra unit of housing services with
its cost. Replacing housing per individual in (D.1) using (D.2) yields

H ln(
H

rh
)−H + stθp

θ−1
t = η. (D.3)

34This is the same property we exploit when we analyze the quantitative model.
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The key feature of (D.3) is that it does not include the housing stock, ht. This
means that after the unanticipated change in TFP population jumps immediately
to its new permanent level p = p∗ found as the solution to (D.3) with st = s∗.
So, when housing is perfectly mobile it is irrelevant for population dynamics.

Now assume the city is endowed with h0 units of housing at t = 0 and that
housing is immobile, meaning that it cannot be rented from or to any other city.
In addition, suppose the change in TFP at t = 1 coincides with the onset of a
potentially different exogenous path of the local housing stock satisfying

lnht − lnh∗ = ρt−1
h (lnh0 − lnh∗) (D.4)

for t ≥ 1, 0 ≤ ρh < 1, and h∗ is the new long run level for h. Equilibrium
population is determined by (D.1) conditional on (D.4). We consider two cases
for this scenerio.

First suppose that the local, immobile housing stock does not change with
TFP, that is h∗ = h0. From (D.1) after the change in TFP p jumps immediately
to its new level given by the value p∗ that solves this equation. The new long
run level of population depends on h0 but the speed of adjustment to p∗ is the
same as when housing is perfectly mobile. In other words the presence of local,
immobile housing is not sufficient for housing to affect population dynamics.

The second case is the new long run level of housing changes with TFP,
h∗ 6= h0. We approximate the transition of population to its new steady state in
this case by log linearizing (D.1) around ln p∗ and lnh∗. This yields

ln pt − ln p∗ =
H

H + s∗θ (1− θ) p∗θ−1
ρt−1
h (lnh0 − lnh∗) .

In this case the speed of convergence of population to its new steady state p∗ is
directly related to the speed of convergence of housing to its new steady state
through ρh. If the adjustment of housing is immediate, ρh = 0, then population’s
adjustment is instantaneous as in the case when h∗ = h0. If 0 < ρh < 1 then
population adjusts in proportion to the adjustment of housing.

We conclude that housing must be immobile and adjust slowly to changes in
local productivity for it to affect population dynamics. It follows that a plausible
quantitative analysis of urban population dynamics in response to TFP shocks
must include endogenous immobile housing and include the possibility of its slow
adjustment. Natural candidates for influencing the speed of adjustment of hous-
ing are construction depending on local resources and durability, which is the
approach we take when formulating our quantitative model.
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E. Inter-state and Inter-city Migration Costs in the Kennan and Walker
(2011) Model

We now justify our conclusion that it is valid to apply Kennan and Walker (2011)’s
estimate of migration costs in our environment. The argument is based on a
calibrated model that incorporates the essence of the individual discrete choice
problem studied by Kennan and Walker (2011) within an equilibrium setting.

There are N locations called cities. Each city i is associated with a wage
that is fixed over time, wi.

35 A person living in city i receives the wage and
then receives a vector of i.i.d. preference shocks, one for each city including the
person’s current city, e = (e1, e2, . . . , eN). After receiving the preference shocks,
the person decides whether to move. The expected value of living in city i before
the shocks are realized but after the wage is paid is

Vi = E

[
max

j∈{1,...,N}

{
wi
α
− c (i, j)

α
+ ej + βVj

}]
Let s denote the state (a unique grouping of cities) containing city i and s′ the
state containing j. The moving cost function c (i, j) is

c(i, j) =


0, if i = j
c1, if i 6= j and s = s′

c2, if i 6= j and s 6= s′

People pay no moving costs if they do not move, and in-state moving costs c1

may be different than out-of-state moving costs c2. Allowing c1 to be different
from c2 is in the spirit of Kennan and Walker (2011)’s finding that moving costs
increase with distance moved.36

Following Kennan and Walker (2011) we assume that the preference shocks
are drawn from the Type 1 Extreme Value Distribution. Given a wage for each
location wi and the parameters of the model, α, β, c1 and c2, we compute the
value functions using backwards recursion. We start with a guess of the expected
value functions for every j = 1, . . . , N . Call the current guess of the expected

35For simplicity we abstract from idiosyncratic wage shocks included by Kennan and Walker
(2011). Kennan and Walker (2011) assume that individuals are finitely lived and only know
the permanent component of wages of their current city and any city they have lived in previ-
ously. In an infinite horizon context individuals eventually live in every city and therefore have
knowledge of the complete wage distribution.

36See the estimate of γ1 in Table II on page 230 of their paper.
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value function at location j as V̂j. We then update the guess at each i = 1, . . . , N

Ṽi = log

{
N∑
j=1

[
exp

(
wi
α
− c (i, j)

α
+ βV̂j

)]}
+ ζ

where ζ is Euler’s constant and Ṽi is the updated guess. We repeat this entire
process until the expected value functions have converged, that is until V̂i is equal
to Ṽi at each of the i = 1, . . . , N cities.

We set N = 365. For each city, we set wi equal to the average wage in the
corresponding MSA in 1990 (the year Kennan and Walker (2011) use to calculate
average state wages) in thousands of dollars. For states that span multiple MSAs,
we set the state s as the state where most of the population of the MSA lives in
1990.37

We assume that β = 0.96, leaving three parameters to be estimated: α,
which scales the shocks into dollar equivalents, and the two moving costs c1 and
c2. We estimate these parameters by targeting three moments: the average rate
of individual migration across all MSAs, 4.47 percent, the average rate of across-
state migration, 3.0 percent, and the average flow benefit scaled by average wage
experienced by migrants, 1.9. For a worker moving from city i to city j, the
flow benefit (scaled to dollars) is α (ej − ei) − c (i, j). Our target value of the
average flow benefits of across-state movers scaled by average wage is taken from
estimates produced by Kennan and Walker (2011) (see footnote 22 in the main
text.) We use data from the IRS for 1990 to compute across-MSA and across-
state migration rates. Our estimate of the across-state migration rate is almost
identical to the estimate reported in Table VIII, page 239 by Kennan and Walker
(2011) of 2.9 percent.

We compute all three moments analytically. The probability agents migrate
to location j given their current location of i, γ (j, i) has the straightforward
expression

γ (j, i) =
exp

(
wi
α
− c(i,j)

α
+ βVj

)
N∑
k=1

[
exp

(
wi
α
− c(i,k)

α
+ βVk

)] .
We construct the N×N matrix Γ, with individual elements γ (j, i), and determine
the steady state distribution of population across metro areas, the N-dimensional
vector ρ, such that ρ = Γρ. Given ρ, we compute the probability of any move at

37Some MSAs span multiple states and this may introduce some error because within-MSA
across-state moves that are truly within MSA will be misclassified as moves to a new labor
market.
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the steady-state population distribution as

N∑
i=1

ρ (i)

[∑
j 6=i

γ (j, i)

]

and the probability of an across-state move as

N∑
i=1

ρ (i)

[ ∑
j 6=i,s′ 6=s

γ (j, i)

]
.

For the third moment, it can be shown that the expected increase in con-
tinuation value from a worker choosing the optimal location as compared to an
arbitrary location is a function of the probability the worker chooses the arbitrary
location. For example, for a worker that optimally moves to location j, the ex-
pected increase in value, inclusive of flow utility and discounted future expected
value, over remaining in the current location i is − log γ (i, i) / (1− γ (i, i)), see
Kennan (2008). The expected increase in current flow payoff for all moves from
j to i is therefore

− log γ (i, i)

1− γ (i, i)
− β (Vj − Vi) .

The average of this second term across all moves, from i to all j 6= i, is∑
j 6=i

γ (j, i) β (Vj − Vi)∑
k 6=i

γ (k, i)
=

∑
j 6=i

γ (j, i) β (Vj − Vi)

1− γ (i, i)
.

The denominator is the probability a move occurs. Thus, conditional on moving,
the average benefit of all moves that occur relative to staying put is

∑
i

(
ρ (i)

1− γ (i, i)

)(
− log γ (i, i)−

∑
j 6=i

γ (j, i) β (Vj − Vi)

)
.

We divide this expression by average wage (appropriately scaled), evaluated at
the steady state:

∑
i

ρ (i)wi/α.

We use the Nelder-Meade algorithm to search for parameters and we match
our 3 target moments exactly. Our parameter estimates are c2 = 76.7, c2 = 116.6,
and α = 17.6. For reference, the mean wage at the steady state population
distribution is 39.051 ($39,051). Our estimates of c1 and c2 imply that in-state and
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out-of-state moving costs are twice and three times average wages, respectively.
These large costs generate low mobility rates in the face of large permanent wage
differentials across metro areas. However, the estimated value of α implies that
the mean and variance of the preference shocks are large. This large variance
generates shocks large enough to induce people to move given the high costs of
moving.

To determine the size of the bias in the Kennan and Walker (2011) esti-
mates from using across-state moves, rather than across-MSA moves, we run
100 simulations of the model, simulating 600,000 people per MSA in each run.
This generates approximately 27,000 moves to any MSA and 20,000 out of state
moves for each MSA in the simulation. In each simulation run, we compute
the economy-wide average flow benefits to across-state movers scaled by average
wages. Averaged across the 100 simulations, the average benefit to across-state
movers scaled by average wage is exactly 2.0, 0.1 higher than the average simu-
lated benefits accruing to all movers. The bias is therefore 5%.38 We find that a
bias of this size does not affect our conclusions.

F. Solving the Quantitative Model

While representing the solution of the economy-wide social planner’s as the so-
lution to a city planner’s problem plus side conditions is a huge simplification,
computing the solution to the city planner’s problem remains a nontrivial task.

The first difficulty is that the value function of the city planner’s problem
has two endogenous variables and two exogenous state variables where the latter
two have very large domains. Each exogenous state variable takes values in a
finite grid but this grid cannot be too coarse if the resulting discrete process is to
represent the original AR(2) in a satisfactory way. To make the task of computing
the value function manageable we used spline approximations.

Cubic spline interpolation is usually used in these cases. A difficulty with
these methods is that they do not necessarily preserve the shape of the original
function, or if they do (as with Schumacher shape-preserving interpolation) it is
somewhat difficult to compute. For these reasons, we use a local method that does
not interpolate the original function but that approximates it while preserving
shape (monotonicity and concavity). An additional benefit is that it is extremely
simple to compute (there is no need to solve a system of equations). The method
is known as the Shoenberg’s variation diminishing spline approximation. It was
first introduced by Shoenberg (1967) and is described in a variety of sources (e.g.
Lyche and Morken (2011)).

38Measured across the 100 runs, the standard deviation of the percent of the bias is 0.2%,
the minimum bias is 4.6% and the maximum bias is 5.7%.
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For a given continuous function f on an interval [a, b], let p be a given positive
integer, and let τ = (τ1, ..., τn+p+1) be a knot vector with n ≥ p + 1, a ≤ τi ≤ b,
τi ≤ τi+1, τp+1 = a and τn+1 = b. The variation diminishing spline approximation
of degree p to f is then defined as

Sp (x) =
n∑
j=1

f
(
τ ∗j
)
Bjp (x)

where τ ∗j = (τj+1 + ...+ τj+p) /p and Bjp (x) is the jth B-spline of degree p eval-
uated at x. The B-splines are defined recursively as follows

Bjp (x) =
x− τj
τj+p − τj

Bj,p−1 (x) +
τj+1+p − x
τj+1+p − τj+1

Bj+1,p−1 (x)

with

Bj0 (x) =

{
1, if τj ≤ x < τj+1

0, otherwise

As already mentioned, this spline approximation preserves monotonicity and
concavity of the original function f (e.g. Lyche and Morken (2011), Section 5.2).
The definition of variation diminishing splines is easily generalized to functions
of more than one variable using tensor products (e.g. Lyche and Morken (2011),
Section 7.2.1). These properties greatly simplify the value function iterations
of the city planner’s problem and they should prove useful in a variety of other
settings. In our actual computations we worked with an approximation of degree
p = 3.

An additional complication involves the return function of the city planner’s
problem. Conditional on the current states (h, x, s, s−1) and future states (h′, x′),
evaluating the one period return function of the city planner requires solving
a nonlinear system of equations in (ny, nh, ky, kh, br, bh) allowing for the possi-
bility that the constraint ny + nh ≤ x′ may bind. This is not a hard task.
However, doing this for every combination of (h, x, s, s−1) and (h′, x′) consid-
ered in solving the maximization problem at each value function iteration would
slow down computations quite considerably. For this reason, we chose to con-
struct a cubic variation-diminishing spline approximation to the return function
R (h, x, s, , s−1, h

′, x′) once, before starting the value function iterations, and use
this approximation instead. In practice, for each value of (h, x, s, s−1) we used a
different knot vector for h′ and x′ to gain accuracy of the return function over
the relevant range.

Performing the maximization over (h′, x′) for each value of (h, x, s, s−1) at
each value function iteration is a well behaved problem given the concavity of the
spline approximations to the return function and the next period value function.
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There are different ways of climbing such a nice hill in an efficient way. In our
case, given that we could offload computations into two Tesla C2075 graphic
cards (with a total of 896 cores), we used the massively parallel capabilities of
the system to implement a very simple generalized bisection method. Essentially
for each value of (h, x, s, s−1) we used a block of 16×16 threads to simultaneously
evaluate 16× 16 combinations of (h′, x′) over a predefined square. We then zoom
to the smallest square area surrounding the highest value and repeat. In practice,
a maximum would be found after only three or four passes.

Statistics under the invariant distribution were computed using Monte Carlo
simulations. This part of the computations was also offloaded to the graphic cards
to exploit their massively parallel capabilities. To avoid costly computations
similar to those encountered in the evaluation of the return function, cubic spline
approximations were used for all decision rules.

Speeding up the solution to the city planner’s problem and Monte Carlo sim-
ulations was crucial since finding solutions (Y,C,Λ, η) to the side conditions re-
quires solving the city planner’s problem and simulating its solution several times.

The source code, which is written in CUDA Fortran, is available upon request.
Compiling it requires the PGI Fortran compiler. Running it requires at least one
NVIDIA graphic card with compute capability higher than 2.0.
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