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1 Static Migration Economy

1.1 Planner’s problem

max

{
ln (C)−

∑
s,x

[
H

(
a (s, x)

x

)2

x+

(
−ψ1

l (s, x)

x
+ ψ2

(
l (s, x)

x

)2
)
x

]
µ (s, x)− τΛ

}

subject to:
p (s, x) ≤ x+ a (s, x) + Λx− l (s, x)∑

s,x

[a (s, x) + Λx]µ (s, x) ≤
∑
s,x

l (s, x)µ (s, x)

a (s, x) ≥ 0

l (s, x) ≥ 0

C ≤
∑
s,x

sp (s, x)θ µ (s, x)

FOC’s:
−τ +

∑
s,x

λξ (s, x)xµ (s, x)− λη ≤ 0 (with = if Λ > 0)

−2H
a (s, x)

x
+ λξ (s, x)− λη ≤ 0 (with = if a(s, x) > 0)[

ψ1 − 2ψ2
l (s, x)

x

]
− λξ (s, x) + λη ≤ 0 (with = if l(s, x) > 0)

ξ (s, x) = sθp (s, x)θ−1

C =
∑
s,x

sp (s, x)θ µ (s, x)

For the model to be consistent with the gross flows data we need that l(s, x) > 0 and
a (s, x) > 0 almost everywhere. The reason we need that l(s, x) > 0 almost everywhere is
that leaving rates are always positive in the data. The reason we need that a(s, x) > 0
almost everywhere is that otherwise we would have sets of positive measure in which total
arrival rates are equal to Λ, which is independent of net population changes p(s,x)−x

x
and

inconsistent with the data.

Suppose that a(s, x) > 0 and l(s, x) > 0 almost everywhere.

Then,

2H
a (s, x)

x
= ψ1 − 2ψ2

l (s, x)

x

i.e.
l (s, x)

x
=

1

2

ψ1

ψ2

− H

ψ2

a (s, x)

x
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Observe that:
p (s, x)− x

x
=
a (s, x)

x
+ Λ− l (s, x)

x

Then,

a (s, x)

x
=

p (s, x)− x
x

− Λ +
l (s, x)

x

=
p (s, x)− x

x
− Λ +

1

2

ψ1

ψ2

− H

ψ2

a (s, x)

x

It follows that

a (s, x)

x
=

ψ2

ψ2 +H

(
p (s, x)− x

x

)
+

ψ2

ψ2 +H

(
1

2

ψ1

ψ2

− Λ

)
It follows that the total arrival rate is given by:

a (s, x)

x
+ Λ =

ψ2

ψ2 +H

(
p (s, x)− x

x

)
+

ψ2

ψ2 +H

(
1

2

ψ1

ψ2

− Λ

)
+ Λ,

which is a linear function of the net population change (p− x) /x. Moreover, the linear
coefficient is:

0 <
ψ2

ψ2 +H
< 1.

Also, the leaving rate is given by:

l (s, x)

x
=

a (s, x)

x
+ Λ−

(
p (s, x)− x

x

)
=

(
− H

ψ2 +H

)(
p (s, x)− x

x

)
+

ψ2

ψ2 +H

(
1

2

ψ1

ψ2

− Λ

)
+ Λ

which also is a linear function of the net population change (p− x) /x, with the linear
coefficient given by

−1 < − H

ψ2 +H
< 0.

Since the empirical linear coefficient ψ2

ψ2+H
is a number between 0 and 1, we need both

that H > 0 and that ψ2 > 0.

Assume for the moment that ψ1 ≤ 0. Then,

a (s, x)

x
=

ψ2

ψ2 +H

(
p (s, x)− x

x

)
+

ψ2

ψ2 +H

(
1

2

ψ1

ψ2

− Λ

)
becomes negative when net population changes p(s,x)−x

x
are non-positive, which is a con-

tradiction. Thus we need that ψ1 > 0 for the model to be consistent with the empirical
adjustments estimated.
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1.2 Alternative specifications for moving costs:

1) Suppose that H = 0.

Then, the FOC’s become

λξ (s, x)− λη ≤ 0 (with = if a(s, x) > 0)

ψ1 − 2ψ2
l (s, x)

x
≤ λξ (s, x)− λη (with = if l(s, x) > 0)

Hence:
ψ1

2ψ2

≤ l (s, x)

x
.

Suppose that ψ1

2ψ2
< l(s,x)

x
and that a(s, x) > 0.

Hence,

ψ1 − 2ψ2
l (s, x)

x
= λξ (s, x)− λη = 0.

A contradiction. Hence ψ1

2ψ2
< l(s,x)

x
implies that a(s, x) = 0

i) Suppose that p(s,x)−x
x
− Λ + ψ1

2ψ2
> 0. Then,

a (s, x)

x
=
p (s, x)− x

x
− Λ +

l (s, x)

x
≥ p (s, x)− x

x
− Λ +

ψ1

2ψ2

> 0.

It follows that

l (s, x)

x
=

ψ1

2ψ2

a (s, x)

x
=

p (s, x)− x
x

− Λ +
ψ1

2ψ2

ii) Suppose that p(s,x)−x
x
− Λ + ψ1

2ψ2
≤ 0.

Suppose that a(s, x) > 0. Then, ψ1

2ψ2
= l(s,x)

x
and

a (s, x)

x
=
p (s, x)− x

x
− Λ +

l (s, x)

x
=
p (s, x)− x

x
− Λ +

ψ1

2ψ2

≤ 0

A contradiction.

Hence

a (s, x)

x
= 0

l (s, x)

x
= Λ−

(
p (s, x)− x

x

)
≥ ψ1

2ψ2
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iii) From i) and ii) we then have that

a (s, x)

x
= max

{
p (s, x)− x

x
− Λ +

ψ1

2ψ2

, 0

}
l (s, x)

x
=

a (s, x)

x
−
(
p (s, x)− x

x

)
+ Λ

= max

{
ψ1

2ψ2

,−
(
p (s, x)− x

x

)
+ Λ

}
Observe that in this case, as long as the net population growth rate is not negative

enough, that the city planner sets the leaving rate at the point of maximum benefits ψ1

2ψ2
and

lets the arrival rate make all the adjustment.

2) Suppose that ψ1 = ψ2 = 0.

Then, the FOC’s become

−2H
a (s, x)

x
+ λξ (s, x)− λη ≤ 0 (with = if a(s, x) > 0)

−λξ (s, x) + λη ≤ 0 (with = if l(s, x) > 0)

i) Suppose that p(s,x)−x
x
− Λ > 0. Then,

a (s, x)

x
=
p (s, x)− x

x
− Λ +

l (s, x)

x
> 0

Hence,

λξ (s, x)− λη = 2H
a (s, x)

x
> 0

It follows that l(s, x) = 0.

Thus,

l (s, x)

x
= 0

a (s, x)

x
=

p (s, x)− x
x

− Λ > 0

ii) Suppose that p(s,x)−x
x
− Λ < 0.

Then,
l (s, x)

x
=
a (s, x)

x
−
(
p (s, x)− x

x
− Λ

)
> 0

Hence,
−λξ (s, x) + λη = 0

5



Assume that a(s, x) > 0. Then,

λξ (s, x)− λη = 2H
a (s, x)

x
> 0

A contradiction.

It follows that a (s, x) = 0.

Thus,

l (s, x)

x
= −

(
p (s, x)− x

x
− Λ

)
> 0

a (s, x)

x
= 0

(iii) Suppose that p(s,x)−x
x
− Λ = 0.

Hence,

a (s, x)

x
=
l (s, x)

x

Suppose that
a (s, x)

x
=
l (s, x)

x
> 0

Then,

λξ (s, x)− λη = 2H
a (s, x)

x
> 0

and,
−λξ (s, x) + λη = 0

A contradiction.

It follows that

a (s, x)

x
=
l (s, x)

x
= 0

iv) From i), ii) and iii) we have that

l (s, x)

x
= max

{
−
(
p (s, x)− x

x
− Λ

)
, 0

}
a (s, x)

x
= max

{
p (s, x)− x

x
− Λ, 0

}
Observe that in this case the city planner always goes to a corner: when net population

growth is positive he sets leaving rates to zero, and when net population growth is negative
he sets arrival rates to zero. Since ψ1 = ψ2 = 0 and H > 0 it follows that the city planner
faces adjustment costs to increase population but not to decrease it.
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1.3 Proof that moving costs imply quadratic adjustment costs in
total population

The derivations assume that
∑

s,x xµ (s, x) = 1,i.e. that aggregate population is equal to
one.

Assume that a (s, x) > 0 and l (s, x) > 0 almost everywhere (which again, is the empiri-
cally relevant case). Then, the first order conditions become the following:

−τ +
∑
s,x

λξ (s, x)xµ (s, x)− λη ≤ 0 (with = if Λ > 0)

ψ1 − 2ψ2
l (s, x)

x
= 2H

a (s, x)

x

ψ1 − 2ψ2
l (s, x)

x
= λξ (s, x)− λη

ξ (s, x) = sθp (s, x)θ−1

C =
∑
s,x

sp (s, x)θ µ (s, x)

p (s, x) = x+ a (s, x) + Λx− l (s, x)∑
s,x

[a (s, x) + Λx]µ (s, x) =
∑
s,x

l (s, x)µ (s, x)

Directed arrival and leaving rates are then given by:

a (s, x)

x
=

ψ1

2H
− ψ2

H

l (s, x)

x

l (s, x)

x
=

a (s, x)

x
+ Λ− p (s, x)− x

x

=
ψ1

2H
− ψ2

H

l (s, x)

x
+ Λ− p (s, x)− x

x

Hence
l (s, x)

x
=

ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ− H

H + ψ2

(
p (s, x)− x

x

)
a (s, x)

x
=

ψ1

2H
− ψ2

H

ψ1

2 (H + ψ2)
− ψ2

H + ψ2

Λ +
ψ2

H + ψ2

(
p (s, x)− x

x

)
Observe that

ψ1

2H
− ψ2

H

ψ1

2 (H + ψ2)
=

ψ1H + ψ1ψ2 − ψ1ψ2

2H (H + ψ2)

=
ψ1

2 (H + ψ2)
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Hence
a (s, x)

x
=

ψ1

2 (H + ψ2)
− ψ2

H + ψ2

Λ +
ψ2

H + ψ2

(
p (s, x)− x

x

)
l (s, x)

x
=

ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ− H

H + ψ2

(
p (s, x)− x

x

)
Going back to the objective function, we have that

−H
[
a (s, x)

x

]2
x+

[
ψ1
l (s, x)

x
− ψ2

(
l (s, x)

x

)2
]
x

= −H
[

ψ1

2 (H + ψ2)
− ψ2

H + ψ2

Λ +
ψ2

H + ψ2

(
p− x
x

)]2
x

+ψ1

[
ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ− H

H + ψ2

(
p− x
x

)]
x

−ψ2

[
ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ− H

H + ψ2

(
p− x
x

)]2
x

= −Hx
[

ψ1

2 (H + ψ2)
− ψ2

H + ψ2

Λ

]2
−Hx2

[
ψ1

2 (H + ψ2)
− ψ2

H + ψ2

Λ

] [
ψ2

H + ψ2

(
p− x
x

)]
−Hx

[
ψ2

H + ψ2

(
p− x
x

)]2
+ψ1x

[
ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ

]
−ψ1x

H

H + ψ2

(
p− x
x

)
−ψ2x

[
ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ

]2
+ψ2x2

[
ψ1

2 (H + ψ2)
+

H

H + ψ2

Λ

] [
H

H + ψ2

(
p− x
x

)]
−ψ2x

[
H

H + ψ2

(
p− x
x

)]2

= −Φ (Λ)− Γ (Λ) (p− x)−Hx
[

ψ2

H + ψ2

(
p− x
x

)]2
− ψ2x

[
H

H + ψ2

(
p− x
x

)]2
= −Φ (Λ)− Γ (Λ) (p− x)−

(
p− x
x

)2
{
Hx

[
ψ2

H + ψ2

]2
+ ψ2x

[
H

H + ψ2

]2}

= −Φ (Λ)− Γ (Λ) (p− x)− Hψ2

H + ψ2

(
p− x
x

)2

x
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Thus, the social planner’s problem can be written as:

max

{
ln (C)−

∑
s,x

[
Φ (Λ) + Γ (Λ) (p− x) +

Hψ2

H + ψ2

(
p (s, x)− x

x

)2

x

]
µ (s, x)− τΛ

}

subject to: ∑
s,x

p (s, x)µ (s, x) ≤
∑
s,x

xµ (s, x)

C ≤
∑
s,x

sp (s, x)θ µ (s, x)

Using the second constraint, we then have that the social planner’s problem can be
written as:

max

{
ln

[∑
s,x

sp (s, x)θ µ (s, x)

]
−
∑
s,x

[
Φ (Λ) +

Hψ2

H + ψ2

(
p (s, x)− x

x

)2

x

]
µ (s, x)− τΛ

}

subject to: ∑
s,x

p (s, x)µ (s, x) ≤
∑
s,x

xµ (s, x)

1.4 Competitive equilibrium

There is a representative household with a continuum of members. Its members are dis-
tributed across city types (s, x) according to the measure µ.

1.4.1 Household problem

max

{
lnC −

∑
s,x

[
H

(
a (s, x)

x

)2

x+

(
−ψ1

l (s, x)

x
+ ψ2

(
l (s, x)

x

)2
)
x

]
µ (s, x)− τΛ

}
subject to:

C +
∑
s,x

q (s, x)m(s, x)µ (s, x) ≤
∑
s,x

q (s, x) a(s, x)µ (s, x) +
∑
s,x

w (s, x) p(s, x)µ (s, x) + Π

p (s, x) ≤ x+m (s, x) + Λx− l (s, x)∑
s,x

[m (s, x) + Λx]µ (s, x) ≤
∑
s,x

l (s, x)µ (s, x)

1.4.2 Firms’ problem in city of type (s, x)

max
{
sn (s, x)θ − w (s, x)

}
9



1.4.3 Market clearing conditions

n (s, x) = p (s, x)

m(s, x) = a (s, x)

for each type of city (s, x), and

C =
∑
s,x

sn (s, x)θ µ (s, x)

1.4.4 First order conditions

Households:

1

C
= λ

−τ +
∑
s,x

λξ (s, x)xµ (s, x)− λη ≤ 0 (with = if Λ > 0)

−2H
a (s, x)

x
+ λq (s, x) ≤ 0 (with = if a(s, x) > 0)

−λq (s, x) + λξ (s, x)− λη ≤ 0 (with = if m(s, x) > 0)[
ψ1 − 2ψ2

l (s, x)

x

]
− λξ (s, x) + λη ≤ 0 (with = if l(s, x) > 0)

λw (s, x) = λξ (s, x)

Firms:
w (s, x) = sθn (s, x)θ−1

Since at equilibrium a (s, x) = m (s, x), we have that

(i) if a (s, x) > 0

λq (s, x) = 2H
a (s, x)

x
= λξ (s, x)− λη > 0

(ii) if a (s, x) = 0

0 ≤ λq (s, x) ≤ 2H
a (s, x)

x
= 0

i.e. q (s, x) = 0, and
ξ (s, x)− η ≤ q (s, x) = 0

We then have that
q (s, x) = max {0, ξ (s, x)− η}

w (s, x) = sθn (s, x)θ−1

With this characterization of equilibrium prices it is straightforward to verify that the
welfare theorems hold.
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1.5 Competitive equilibrium with guided trips produced both at
home and the market

There is a representative household with a continuum of members. Its members are dis-
tributed across city types (s, x) according to the measure µ.

1.5.1 Household problem

max

{
lnC −

∑
s,x

[
H

(
am (s, x) + ah (s, x)

x

)2

x+

(
−ψ1

l (s, x)

x
+ ψ2

(
l (s, x)

x

)2
)
x

]
µ (s, x)− τΛ

}
subject to:

C +
∑
s,x

q (s, x)m(s, x)µ (s, x) ≤
∑
s,x

q (s, x) am(s, x)µ (s, x) +
∑
s,x

w (s, x) p(s, x)µ (s, x) + Π

p (s, x) ≤ x+m (s, x) + ah (s, x) + Λx− l (s, x) (1)∑
s,x

[m (s, x) + ah (s, x) + Λx]µ (s, x) ≤
∑
s,x

l (s, x)µ (s, x) (2)

1.5.2 Firms’ problem in city of type (s, x)

max
{
sn (s, x)θ − w (s, x)

}
1.5.3 Market clearing conditions

n (s, x) = p (s, x) (3)

m(s, x) = am (s, x) (4)

for each type of city (s, x), and

C =
∑
s,x

sn (s, x)θ µ (s, x) (5)

1.5.4 First order conditions

Households:

1

C
= λ (6)

− τ +
∑
s,x

λξ (s, x)xµ (s, x)− λη ≤ 0 (with = if Λ > 0) (7)
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− 2H
am (s, x) + ah (s, x)

x
+ λq (s, x) ≤ 0 (with = if am(s, x) > 0) (8)

− 2H
am (s, x) + ah (s, x)

x
+ λξ (s, x)− λη ≤ 0 (with = if ah(s, x) > 0) (9)

− λq (s, x) + λξ (s, x)− λη ≤ 0 (with = if m(s, x) > 0) (10)[
ψ1 − 2ψ2

l (s, x)

x

]
− λξ (s, x) + λη ≤ 0 (with = if l(s, x) > 0) (11)

λw (s, x) = λξ (s, x) (12)

Firms:
w (s, x) = sθn (s, x)θ−1 (13)

Using that m(s, x) = am (s, x), from equations (1)-(13) we verify that a competitive
equilibrium only determines the total number of guided trips into a city am (s, x) + ah (s, x):
the composition of these guided trips between market activities am (s, x) and home activities
ah (s, x) is left undetermined.

(i) In an equilibrium in which m(s, x) = am (s, x) > 0 we have that

λq (s, x) = 2H
am (s, x) + ah (s, x)

x
= λξ (s, x)− λη > 0

(ii) In an equilibrium in which m(s, x) = am (s, x) = 0 and ah (s, x) > 0 we have that

λq (s, x) ≤ 2H
am (s, x) + ah (s, x)

x
= λξ (s, x)− λη

(iii) In an equilibrium in which m(s, x) = am (s, x) = ah (s, x) = 0 we have that

0 ≤ λq (s, x) ≤ 2H
am (s, x) + ah (s, x)

x
= 0

i.e. q (s, x) = 0, and
ξ (s, x)− η ≤ q (s, x) = 0

We then have that
q (s, x) = max {0, ξ (s, x)− η}

w (s, x) = sθn (s, x)θ−1

With this characterization of equilibrium prices it is straightforward to verify that the
welfare theorems hold.
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1.6 Adjustment rules in the general case

First order conditions:

ψ1 − 2ψ2
l

x
≤ 2H

a

x
, (with equality if

a

x
> 0 and

l

x
> 0)

p

x
= 1 +

a

x
+ Λ− l

x

Define
A

x
=
a

x
+ Λ

Take p
x

as given.

1) Check case a
x

= 0.

Define (
l

x

)∗
= 1 + Λ− p

x

If

ψ1 − 2ψ2

(
l

x

)∗
≤ 0

Then,

A

x
= Λ

l

x
=

(
l

x

)∗
2) Else, check case l

x
= 0.

Define (
A

x

)∗
=
p

x
− 1

If

ψ1 ≤ 2H

[(
A

x

)∗
− Λ

]
Then,

A

x
=

(
A

x

)∗
l

x
= 0

3) Else, consider case a
x
> 0 and l

x
> 0.
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ψ1

2H
− ψ2

H

l

x
=
a

x

p

x
= 1 +

a

x
+ Λ− l

x

Hence,

p

x
= 1 +

ψ1

2H
− ψ2

H

l

x
+ Λ− l

x

= 1 +
ψ1

2H
− ψ2

H

l

x
+ Λ− l

x

= 1 +
ψ1

2H
−
(
ψ2 +H

H

)
l

x
+ Λ

That is,

l

x
=

(
H

ψ2 +H

)[
1 +

ψ1

2H
+ Λ− p

x

]
A

x
=

p

x
− 1 +

l

x

Observe that p
x

below which A
x

= Λ is(p
x

)∗
= 1 + Λ− ψ1

2ψ2

2 Dynamic Economy

2.1 Recursive formulation of economy-wide social planner prob-
lem

J (K,µ) = max

{
lnC − τΛ−

∫
φ (ny + nh)

π p1−πdµ+

∫
A ln

(
hςb1−ςr

p

)
pdµ

−
∫
H
(a
x

)2
xdµ+

∫ [
ψ1
l

x
− ψ2

(
l

x

)2
]
xdµ+ βJ (K ′, µ′)

}
subject to

p (h, x, s, s−1) = x+ a (h, x, s, s−1) + Λx− l

a (h, x, s, s−1) ≥ 0

l (h, x, s, s−1) ≥ 0

ny (h, x, s, s−1) + nh (h, x, s, s−1) ≤ p (h, x, s, s−1)

br (h, x, s, s−1) + bh (h, x, s, s−1) = b̄

14



∫
a dµ+ Λ =

∫
l dµ∫

[ky + kh] dµ = K

C + I =

{∫ [
snθyk

γ
y

]χ
dµ

} 1
χ

K ′ = (1− δk) + I

µ′ (H × X , s′, s) =

∫
B(H×X ,s,s−1)

Q (s′; s, s−1) dµ

B (H × X , s, s−1) = {(h, x, s, s−1) : p (h, x, s, s−1) ∈ X

and (1− δh)h+ nαh (h, x, s, s−1) k
λ
h (h, x, s, s−1) b

1−α−λ
h (h, x, s, s−1) ∈ H

}
Definition: A steady state is an aggregate state (K∗, µ∗) that is time invariant under

the optimal decision rules.

Section 2.5 provides a characterization of this steady state in terms of a much simpler
dynamic programming problem and certain side conditions. In order to arrive to this char-
acterization it will be convenient to work with a sequential formulation to the economy-wide
social planner problem. The next section provides such formulation.

2.2 Economy-wide social planner problem in sequential form

Define

µt
(
st, h0, x0, s0, s−1

)
= Q (st; st−1, st−2) ...Q(s2; s1, s0)Q(s1; s0, s−1)µ0 (h0, x0, s0, s−1)

Then, the economy-wide social planner problem is the following:

max
∞∑
t=0

βt

{
lnCt −

∑
st

[
φ
(
ny,t

(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

))π
pt
(
st, h0, x0, s0, s−1

)1−π

+A ln

(
ht (st, h0, x0, s0, s−1)

ς
br,t (st, h0, x0, s0, s−1)

1−ς

pt (st, h0, x0, s0, s−1)

)
pt
(
st, h0, x0, s0, s−1

)
−τΛtpt−1

(
st−1, h0, x0, s0, s−1

)
−H

(
at (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)2

pt−1
(
st−1, h0, x0, s0, s−1

)
+

(
ψ1

lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)
− ψ2

(
lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)2
)
pt−1

(
st−1, h0, x0, s0, s−1

)
15



×µt
(
st, h0, x0, s0, s−1

)]}
subject to:

pt
(
st, h0, x0, s0, s−1

)
= pt−1

(
st−1, h0, x0, s0, s−1

)
+ at

(
st, h0, x0, s0, s−1

)
+ Λtpt−1

(
st−1, h0, x0, s0, s−1

)
− lt

(
st, h0, x0, s0, s−1

)
(14)

at
(
st, h0, x0, s0, s−1

)
≥ 0 (15)

lt
(
st, h0, x0, s0, s−1

)
≥ 0 (16)

ny,t
(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

)
≤ pt

(
st, h0, x0, s0, s−1

)
(17)

br,t
(
st, h0, x0, s0, s−1

)
+ bh,t

(
st, h0, x0, s0, s−1

)
= b̄ (18)

ht+1

(
st+1, h0, x0, s0, s−1

)
= (1− δh)ht

(
st, h0, x0, s0, s−1

)
+nh,t

(
st, h0, x0, s0, s−1

)α
kh,t
(
st, h0, x0, s0, s−1

)λ
bh,t
(
st, h0, x0, s0, s−1

)1−α−λ
(19)

∑
at
(
st, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
+ Λt

=
∑

lt
(
st, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
(20)∑[

ky,t
(
st, h0, x0, s0, s−1

)
+ kh,t

(
st, h0, x0, s0, s−1

)]
µt
(
st, h0, x0, s0, s−1

)
= Kt (21)

Ct +Kt+1 − (1− δk)Kt

=
{∑[

stn
θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
µt
(
st, h0, x0, s0, s−1

)} 1
χ

(22)

with (K0, µ0) given.

FOC’s:

ϕt =
1

Ct
(23)

∑
ϕtξt(s

t, h0, x0, s0, s−1)pt−1
(
st−1, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
−ϕtηt ≤ τ, (= 0 if Λt > 0)

(24)

ϕtξt(s
t, h0, x0, s0, s−1)−ϕtηt ≤ H2

(
at (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)
,
(
= 0 if at

(
st, h0, x0, s0, s−1

)
> 0
)

(25)

ψ1−2ψ2

(
lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)
≤ ϕtξt(s

t, h0, x0, s0, s−1)−ϕtηt0,
(
= 0 if lt

(
st, h0, x0, s0, s−1

)
> 0
)

(26)
ϕtξt(s

t, h0, x0, s0, s−1) =

16



−φ
(
ny,t

(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

))π
(1− π) pt

(
st, h0, x0, s0, s−1

)−π
+A ln

(
ht (st, h0, x0, s0, s−1)

ς
br,t (st, h0, x0, s0, s−1)

1−ς

pt (st, h0, x0, s0, s−1)

)
− A

+β
∑
st+1

H

(
at+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2

Q(st+1; st, st−1)

+β
∑
st+1

[
ψ1
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)
− ψ2

(
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2
]
Q(st+1; st, st−1)

−β
∑
st+1

[
ψ1
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)
− 2ψ2

(
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2
]
Q(st+1; st, st−1)

+
∑
st+1

βϕt+1ξt+1(s
t+1, h0, x0, s0, s−1) (1 + Λt+1)Q(st+1; st, st−1)

+ϕt
[
wt(s

t, h0, x0, s0, s−1)

− 1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π
]

− Λt+1βϕt+1ηt+1 (27)

wt(s
t, h0, x0, s0, s−1) ≥

1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π

(28)[
wt(s

t, h0, x0, s0, s−1)−
1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π
]

×
[
pt
(
st, h0, x0, s0, s−1

)
− ny,t

(
st, h0, x0, s0, s−1

)
− nh,t

(
st, h0, x0, s0, s−1

)]
= 0 (29)

wt(s
t, h0, x0, s0, s−1) =

{∑[
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
µt
(
st, h0, x0, s0, s−1

)} 1
χ
−1

[
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ−1
stθn

θ−1
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)
(30)

wt(s
t, h0, x0, s0, s−1) = (31)

ϑt(s
t, h0, x0, s0, s−1)αnh,t

(
st, h0, x0, s0, s−1

)α−1
kh,t
(
st, h0, x0, s0, s−1

)λ
bh
(
st, h0, x0, s0, s−1

)1−α−λ
ϕtϑt(s

t, h0, x0, s0, s−1) =
∑
st+1

βϕt+1ϑt+1(s
t+1, h0, x0, s0, s−1) (1− δh)Q(st+1; st, st−1)

+
∑
st+1

βAς
pt+1 (st=1, h0, x0, s0, s−1)

ht+1 (st+1, h0, x0, s0, s−1)
Q(st+1; st, st−1) (32)
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ϕtrbt(s
t, h0, x0, s0, s−1) = A (1− ς) pt (st, h0, x0, s0, s−1)

br,t (st, h0, x0, s0, s−1)
(33)

rbt(s
t, h0, x0, s0, s−1) = ϑt(s

t, h0, x0, s0, s−1)× (34)

nh,t
(
st, h0, x0, s0, s−1

)α
kh,t
(
st, h0, x0, s0, s−1

)λ
(1− α− λ) bh

(
st, h0, x0, s0, s−1

)−α−λ
rkt = ϑt(s

t, h0, x0, s0, s−1)nh,t
(
st, h0, x0, s0, s−1

)α
λkh,t

(
st, h0, x0, s0, s−1

)λ−1
bh
(
st, h0, x0, s0, s−1

)1−α−λ
(35)

rkt =
{∑[

stn
θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
µt
(
st, h0, x0, s0, s−1

)} 1
χ
−1
(36)[

stn
θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ−1
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
γkγ−1y,t

(
st, h0, x0, s0, s−1

)
(37)

− ϕt + βϕt+1 (1− δk) + βϕt+1rk,t+1 = 0 (38)

2.3 City planner’s problem in sequential form

Takes as given {Yt, ϕt, ηt, rkt,Λt}∞t=0.

Define
µ̂
(
st
)

= Q (st; st−1, st−2) ...Q(s2; s1, s0)Q(s1; s0, s−1).

Then, the city planner’s problem is the following:

max
∞∑
t=0

β
∑
st

{
ϕt

1

χ
Y 1−χ
t

[
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
−φ
(
ny,t

(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

))π
pt
(
st, h0, x0, s0, s−1

)1−π
+A ln

(
ht (st, h0, x0, s0, s−1)

ς
br,t (st, h0, x0, s0, s−1)

1−ς

pt (st, h0, x0, s0, s−1)

)
pt
(
st, h0, x0, s0, s−1

)
−ϕtrkt

[
ky,t
(
st, h0, x0, s0, s−1

)
+ kh,t

(
st, h0, x0, s0, s−1

)]
−ϕtηt

[
at
(
st, h0, x0, s0, s−1

)
+ Λtpt−1

(
st−1, h0, x0, s0, s−1

)]
+ϕtηtlt

(
st, h0, x0, s0, s−1

)
−H

(
at (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)2

pt−1
(
st−1, h0, x0, s0, s−1

)
+

[
ψ1

lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)
− ψ2

(
lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)2
]
pt−1

(
st−1, h0, x0, s0, s−1

)}
µ̂
(
st
)

subject to:

pt
(
st, h0, x0, s0, s−1

)
= pt−1

(
st−1, h0, x0, s0, s−1

)
+ at

(
st, h0, x0, s0, s−1

)
18



+ Λtpt−1
(
st−1, h0, x0, s0, s−1

)
− lt

(
st, h0, x0, s0, s−1

)
(39)

at
(
st, h0, x0, s0, s−1

)
≥ 0 (40)

lt
(
st, h0, x0, s0, s−1

)
≥ 0 (41)

ny,t
(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

)
≤ pt

(
st, h0, x0, s0, s−1

)
(42)

br,t
(
st, h0, x0, s0, s−1

)
+ bh,t

(
st, h0, x0, s0, s−1

)
= b̄ (43)

ht+1

(
st+1, h0, x0, s0, s−1

)
= (1− δh)ht

(
st, h0, x0, s0, s−1

)
(44)

+nh,t
(
st, h0, x0, s0, s−1

)α
kh,t
(
st, h0, x0, s0, s−1

)λ
bh,t
(
st, h0, x0, s0, s−1

)1−α−λ
(45)

with (h0, x0, s0, s−1) given.

FOC’s:

ϕtξt(s
t, h0, x0, s0, s−1)−ϕtηt ≤ H2

(
at (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)
,
(
= 0 if at

(
st, h0, x0, s0, s−1

)
> 0
)

(46)

ψ1−2ψ2

(
lt (st, h0, x0, s0, s−1)

pt−1 (st−1, h0, x0, s0, s−1)

)
≤ ϕtξt(s

t, h0, x0, s0, s−1)−ϕtηt,
(
= 0 if lt

(
st, h0, x0, s0, s−1

)
> 0
)

(47)
ϕtξt(s

t, h0, x0, s0, s−1) =

−φ
(
ny,t

(
st, h0, x0, s0, s−1

)
+ nh,t

(
st, h0, x0, s0, s−1

))π
(1− π) pt

(
st, h0, x0, s0, s−1

)−π
+A ln

(
ht (st, h0, x0, s0, s−1)

ς
br,t (st, h0, x0, s0, s−1)

1−ς

pt (st, h0, x0, s0, s−1)

)
− A

+β
∑
st+1

H

(
at+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2

Q(st+1; st, st−1)

+β
∑
st+1

[
ψ1
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)
− ψ2

(
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2
]
Q(st+1; st, st−1)

−β
∑
st+1

[
ψ1
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)
− 2ψ2

(
lt+1 (st+1, h0, x0, s0, s−1)

pt (st, h0, x0, s0, s−1)

)2
]
Q(st+1; st, st−1)

+
∑
st+1

βϕt+1ξt+1(s
t+1, h0, x0, s0, s−1) (1 + Λt+1)Q(st+1; st, st−1)

+ϕt
[
wt(s

t, h0, x0, s0, s−1)

− 1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π
]

− Λt+1βϕt+1ηt+1 (48)
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wt(s
t, h0, x0, s0, s−1) ≥

1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π

[
wt(s

t, h0, x0, s0, s−1)−
1

ϕt
φπ
[
ny,t(s

t, h0, x0, s0, s−1) + nh,t(s
t, h0, x0, s0, s−1)

]π−1
pt(s

t, h0, x0, s0, s−1)
1−π
]

×
[
pt
(
st, h0, x0, s0, s−1

)
− ny,t

(
st, h0, x0, s0, s−1

)
− nh,t

(
st, h0, x0, s0, s−1

)]
= 0 (49)

wt(s
t, h0, x0, s0, s−1) = Y 1−χ

t[
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ−1
stθn

θ−1
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)
(50)

wt(s
t, h0, x0, s0, s−1) = (51)

ϑt(s
t, h0, x0, s0, s−1)αnh,t

(
st, h0, x0, s0, s−1

)α−1
kh,t
(
st, h0, x0, s0, s−1

)λ
bh
(
st, h0, x0, s0, s−1

)1−α−λ
ϕtϑt(s

t, h0, x0, s0, s−1) =
∑
st+1

βϕt+1ϑt+1(s
t+1, h0, x0, s0, s−1) (1− δh)Q(st+1; st, st−1)

+
∑
st+1

βAς
pt+1 (st=1, h0, x0, s0, s−1)

ht+1 (st+1, h0, x0, s0, s−1)
Q(st+1; st, st−1) (52)

ϕtrbt(s
t, h0, x0, s0, s−1) = A (1− ς) pt (st, h0, x0, s0, s−1)

br,t (st, h0, x0, s0, s−1)
(53)

rbt(s
t, h0, x0, s0, s−1) = ϑt(s

t, h0, x0, s0, s−1)× (54)

nh,t
(
st, h0, x0, s0, s−1

)α
kh,t
(
st, h0, x0, s0, s−1

)λ
(1− α− λ) bh

(
st, h0, x0, s0, s−1

)−α−λ
rkt = ϑt(s

t, h0, x0, s0, s−1)nh,t
(
st, h0, x0, s0, s−1

)α
λkh,t

(
st, h0, x0, s0, s−1

)λ−1
bh
(
st, h0, x0, s0, s−1

)1−α−λ
(55)

rkt = Y 1−χ
t (56)[
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ−1
stn

θ
y,t

(
st, h0, x0, s0, s−1

)
γkγ−1y,t

(
st, h0, x0, s0, s−1

)
(57)

2.4 Equivalence between economy-wide social planner’s problem
and city planner’s problem

Proposition 1: Let {Ct, Kt+1, nyt, nht, kyt, kht, ht+1, brt, bht, pt,Λt, at, lt, ϕt, ξt, ηt, wt, ϑt, rbt, rkt}∞t=0

be the unique solution to the economy-wide social planner problem with initial state (K0, µ0).

Define

Yt =
{∑[

stn
θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
µt
(
st, h0, x0, s0, s−1

)} 1
χ
. (58)
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Then, for each initial state (h0, x0, s0, s−1), {nyt, nht, kyt, kht, ht, brt, bht, pt, at, lt, ξt, wt, ϑt, rbt}∞t=0

is the unique solution to the city planner’s problem that takes {Yt, ϕt, ηt, rkt,Λt}∞t=0 as given.

Proof: It follows from the fact that equations (14)-(19),(25)-(36),(58) imply equations
(39)-(45),(46)-(57).

Proposition 2: For each initial state (h0, x0, s0, s−1) let {nyt, nht, kyt, kht, ht+1, brt, bht, pt, at,
lt, ξt, wt, ϑt, rbt}∞t=0 be the unique solution to the city planner’s problem that takes {Yt, ϕt, ηt, rkt,Λt}∞t=0

as given.

Define

Kt =
∑[

ky,t
(
st, h0, x0, s0, s−1

)
+ kh,t

(
st, h0, x0, s0, s−1

)]
µt
(
st, h0, x0, s0, s−1

)
, (59)

Ct = Yt −Kt+1 + (1− δk)Kt. (60)

Suppose that

Yt =
{∑[

stn
θ
y,t

(
st, h0, x0, s0, s−1

)
kγy,t
(
st, h0, x0, s0, s−1

)]χ
µt
(
st, h0, x0, s0, s−1

)} 1
χ
, (61)

ϕt =
1

Ct
,

− ϕt + βϕt+1 (1− δk) + βϕt+1rk,t+1 = 0, (62)∑
ϕtξt(s

t, h0, x0, s0, s−1)pt−1
(
st−1, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
−ϕtηt ≤ τ, (= 0 if Λt > 0) ,

(63)∑
at
(
st, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
+ Λt

=
∑

lt
(
st, h0, x0, s0, s−1

)
µt
(
st, h0, x0, s0, s−1

)
. (64)

Then, {Ct, Kt+1, nyt, nht, kyt, kht, ht+1, brt, bht, pt,Λt, at, lt, ϕt, ξt, ηt, wt, ϑt, rbt, rkt}∞t=0 is the
unique solution to the economy-wide social planner problem with initial state (K0, µ0).

Proof: It follows from the fact that equations (39)-(45),(46)-(57),(61)-(60) imply equa-
tions (14)-(22),(23)-(38).

2.5 Characterization of a steady state allocation

Consider the following recursive formulation to the city planner’s problem that takes (Y, ϕ, η, rk,Λ)
as given.

V (h, x, s, s−1) = max

{
ϕ

1

χ
Y 1−χ [snθykγy ]χ − φ (ny + nh)

π p1−π + A ln

(
hςb1−ςr

p

)
p

−ϕrk (ky + kh)− ϕη (a+ Λx) + ϕηl
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−H
(a
x

)2
x+

[
ψ1
l

x
− ψ2

(
l

x

)2
]
x+ β

∑
s′

V (h′, x′, s′, s)Q (s′; s, s−1)

}
subject to

p = x+ a+ Λx− l

a ≥ 0

l ≥ 0

ny + nh ≤ p

br + bh = b̄

h′ = (1− δh)h+ nαhk
λ
hb

1−α−λ
h

x′ = p

Proposition 3: Let (ny, nh, ky, kh, h
′, br, bh, p, a, l) be the optimal decision rules to the

recursive city planner’s problem that takes (Y, ϕ, η, rk,Λ) as given.

Let µ be the invariant distribution generated by the optimal decision rules (h′, p) and the
transition function Q.

Define

K =

∫
(ky + kh) dµ (65)

C = Y − δkK

and
ξ (h, x, s, s−1) =

{CH2

[
a (h, x, s, s−1)

x

]
+ η, if a (h, x, s, s−1) > 0,C

[
ψ1 − 2ψ2

(
l (h, x, s, s−1)

x

)]
+ η, otherwise.

Suppose that

Y =

{∫ [
snθyk

γ
y

]χ
dµ

} 1
χ

(66)

rk =
1

β
− 1 + δk (67)∫

adµ+ Λ =

∫
ldµ (68)∫

1

C
[ξ − η]xdµ ≤ τ, (= 0 if Λ > 0) , (69)

Then, (C,K, ny, nh, ky, kh, h
′, br, bh, p,Λ, a, l) describes a steady state allocation.

Proof: It follows from Proposition 2 and equations (46)-(47).
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