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1 Introduction

Cities emerge because of productivity gains that accompany the clustering of pro-

duction and workers. Also known as agglomeration effects, these gains arise from

better matching of workers and jobs, knowledge spillovers that accelerate the adop-

tion of new technologies, expanded opportunities for specialization, scale economies

in the provision of common intermediate inputs, and lower transportation costs. Be-

cause agglomeration effects give rise to cities, most economic activity, and therefore

growth, occurs in cities. A question that naturally arises is the extent to which local

agglomeration contributes to aggregate growth. Our paper answers this question by

estimating a dynamic stochastic general equilibrium model of cities and growth in

which local agglomeration affects per capita consumption growth.

Our model extends the neoclassical growth model along three dimensions. First,

production and housing are location-specific; second, local infrastructure is a pro-

duced durable input into finished land, which is in turn used in production and

housing; and third, local agglomeration effects offset the congestion that stems from

crowding more workers onto the same finished land, as proposed by Ciccone and Hall

(1996). Agglomeration is modeled as an externality in which total factor productivity

(TFP) at a location is increasing in the location’s output density – total output per

acre of finished land in production. We study the model’s competitive equilibrium

in which agents do not take into account the density externality.1 Along the model’s

balanced growth path, per capita consumption growth depends on the endogenously

determined rate of increase in finished land prices and a parameter governing the

effect of agglomeration on productivity.

In this setting, agglomeration affects growth only if land prices exhibit a trend.

With a positive trend in land prices, agglomeration affects growth via two channels.

First, firms economize on land when it becomes more costly, thereby increasing con-

gestion and lowering growth. This effect is analogous, though opposite in direction, to

the effect on capital of falling equipment prices in Greenwood, Hercowitz, and Krusell

(1997). Second, when rising land prices curtail land use, density and therefore TFP

grow faster than they would otherwise. We estimate that land prices indeed have

a positive secular trend, growing 1.0% per year between 1978 and 2009. Combined

1We do not prove that this equilibrium is unique – a point we discuss further below.
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with our estimate of the effect of agglomeration on local productivity, this estimate of

the growth rate of land prices implies that agglomeration, by itself, raises per capita

consumption growth by an economically and statistically significant 10.2%.

Our strategy for identifying the size of the density externality builds on Lucas

(2001), whose identification uses variation in land rents within a city. Similarly, we

use variation in land rents both across cities and over time to estimate our model’s

parameters jointly via generalized method of moments (GMM). We can identify the

density externality in this estimation because it induces co-variation between TFP

growth and an instrumental-variable prediction of growth in land rents. Predicted

increases in land rents lead firms to economize on land, thereby raising density and

TFP growth. In our model, TFP growth is positively correlated contemporaneously

with realized land rents regardless of whether the density externality is operative.

Nevertheless, our instrumental variables strategy identifies the magnitude of the ex-

ternality because predicted land rents are orthogonal to the TFP shock that drives

the contemporaneous correlation between realized TFP and land rents.

Our estimation combines evidence from aggregate time series and a panel of 22

U.S. cities for the years 1978 to 2009. We estimate the local effects of agglomeration

using both data sets. The panel data contain information on land rents and the nec-

essary inputs to a conventional measure of city-specific TFP, in which we control for

heterogeneity in the work force following Ciccone and Peri (2006). We use aggregate

time-series data to estimate other model parameters. Some of these parameters enter

into our measurement of TFP, and some we use, along with our estimate of the size

of agglomeration effects, to measure the impact of agglomeration on growth. Our

estimation accounts for the sampling uncertainty in both the micro and macro data.

While our paper is novel for using city-level data to quantify the impact of city-

level agglomeration on aggregate growth within a fully-specified model, it follows

a substantial theoretical literature that rationalizes aggregate growth models with

evidence on cities. Eaton and Eckstein (1997), Black and Henderson (1999), and

Rossi-Hansberg and Wright (2007) study endogenous growth driven by human capi-

tal externalities of the kind introduced by Lucas (1988); Duranton (2007) considers

the Grossman and Helpman (1991) quality ladder model of endogenous growth; and

Córdoba (2008) studies balanced growth in a neoclassical growth model with exoge-
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nous technical change. Only Black and Henderson (1999) and Córdoba (2008) include

a connection between agglomeration and aggregate growth, but they do not attempt

to quantify the contribution of agglomeration to aggregate growth.

The key distinguishing characteristic of our framework is the role played by land.

Duranton (2007) and Córdoba (2008) have no explicit role for land. In the other

models, land is differentiated by its distance from the city center, with more distant

land entailing either higher commuting costs, as in Black and Henderson (1999) and

Rossi-Hansberg and Wright (2007), or lower productivity, as in Eaton and Eckstein

(1997). In these models, cities expand by adding land to the perimeter at constant

marginal cost. In our model, finished land is a homogeneous input to both housing

and production. Cities expand by adding housing and production and by adding

costly infrastructure to raw land. Infrastructure accumulation thus contributes to

aggregate growth by adding increasingly costly finished land to existing cities.2

The paper is organized as follows with additional details in the online technical

appendix Davis, Fisher, and Whited (2013) (DFW). Section 2 describes our structural

model. Sections 3 and 4 then describe the empirical strategy and the data. Section

5 discusses and provides some validation of the estimates. In Section 6 we provide

additional validation of the estimates by solving and simulating our model. Section

7 concludes.

2 The Model

Because it is central to our empirical work, we begin by describing the Ciccone-

Hall model of agglomeration. We then outline the decentralized competitive growth

model that incorporates their framework, describe the planning problem that yields

the equilibrium outcomes, and characterize the model’s balanced growth path.

2.1 Modeling Agglomeration

2Another related paper is Nieuwerburgh and Weil (2010) who study house price dispersion within
a multi-city model that features land accumulation, but not agglomeration effects or growth. Their
model and ours can be viewed as dynamic versions of the classic Roback (1982) and Rosen (1979)
system-of-cities model.
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Duranton and Puga (2004) review the extensive theoretical literature on the micro-

foundations of urban agglomeration, emphasizing gains from specialization and vari-

ety, improved labor market matching, and learning. Ciccone and Hall (1996) argue

that many of these ideas lead to the same implication: productivity is rising in the

density of economic activity. We therefore work with their simple reduced form. In

addition, this framework is convenient because it is also easily embedded in a standard

growth framework and is particularly amenable to empirical analysis.

In the Ciccone-Hall model, production per acre of land at a location is a constant-

returns function of labor and a non-transportable composite service input. This sec-

ond input is a constant-elasticity-of-substitution function of an endogenous number

of service varieties. Fixed costs of providing services and free entry yield a zero-profit

condition that determines the number of varieties. Denser, higher-productivity acres

of land have greater variety because more intermediate service producers can break

even. This connection between density and variety in turn yields an expression for the

production of composite services in which labor productivity increases with the num-

ber of varieties. With density leading to variety, and variety leading to productivity,

the model yields a reduced-form relationship between density and productivity.

Land is exogenously fixed in the Ciccone-Hall model. In reality, land occupied by

cities changes over time. Furthermore, we show that assuming a fixed stock of pro-

ductive land biases upwards our estimates of the affect of agglomeration on growth.

We therefore depart slightly from the Ciccone-Hall model by assuming that land is

productive only after having infrastructure put in place. The land occupied by a

city grows via the accumulation of infrastructure, with diminishing returns to infras-

tructure capturing the idea that the best quality raw land gets developed first. This

approach is easily justified by the obvious importance of roads, sewers, electricity, and

other factors that are tied to a location and necessary for housing and production.

2.2 Economic Environment

To embed the Ciccone-Hall model of agglomeration in a dynamic stochastic general

equilibrium model, we must take a stand on market structure and the nature of

insurance arrangements among the model’s agents. In addition, we need to describe

how workers move from one city to another, for example by paying a re-location
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fee. Here we consider a natural benchmark: complete markets in state-contingent

consumption claims, perfect competition, and costless labor mobility.

There is an infinitely lived representative household with a unit measure of ho-

mogeneous members who inelastically supply a unit of labor each period, taken to

be a year. We initially assume the number of households is fixed, but later intro-

duce household growth. The household maximizes the expected present value of its

members’ utility, which depends on locally provided housing services, h, and a con-

sumption good that is freely traded across a fixed measure of locations called cities.

Because of complete markets, per capita consumption in each city is identical and

equal to aggregate per capita consumption, C.3 Each period the household freely

allocates across cities its workers, business capital, and residential structures: n, kb

and kh, with kb, and kh chosen from the predetermined aggregate stocks, Kb and

Kh. The household also chooses for the next period these two aggregate stocks and

infrastructure in each city, kf . These decisions are made after the household observes

each city’s output density, x, defined as total production of the local intermediate

good per unit of finished land, and an exogenous productivity shock, z, which evolves

as a stationary discrete Markov process. The household takes all prices and the dis-

tribution of productivity and density as given, and in particular does not take into

account the effect of its actions on the density of production in each location.

In addition to workers, each city contains landlords, providers of housing services,

and intermediate good producers. Landlords rent local infrastructure capital from the

household and combine it with raw land to produce finished land, which they rent to

local goods producers and housing service providers. Housing service providers rent

residential structures and finished land, lh, to produce housing services, which they

sell to workers. Intermediate goods producers rent business capital and labor from

the household, and finished land, lb, to produce the city-specific intermediate good,

y. Output in a city with TFP a is given by:

y ≤ al1−ϕ
b kαϕb n(1−α)ϕ. (1)

TFP is specified as:

a = [Υz](1−α)ϕ x
λ−1
λ , (2)

3Lower case letters denote city-level allocations, and upper case letters denote economy-wide per
capita aggregates.
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where Υ denotes the aggregate level of Hicks-neutral technology. Factor share param-

eters α and ϕ lie in the interval [0, 1]. Congestion affects production according to ϕ;

if ϕ = 1, then congestion has no impact. The effect of output density x on local TFP

is denoted by λ ≥ 1, with λ = 1 corresponding to no impact. Equations (1) and (2)

combined are equivalent to the specification in Ciccone and Hall (1996) except that

the finished land input does not equal the endowment of raw land in the city.

Final good producers combine the city-specific intermediate goods to produce a

composite final good that can be transformed linearly into consumption and capital

goods. Landlords, housing service providers, intermediate goods producers, and final

goods producers maximize profits taking all prices, productivity shocks and density

as given. There is no aggregate uncertainty.

2.3 Competitive Equilibrium

The competitive equilibrium for this economy can be found as the solution to a plan-

ning problem with side conditions. While we exploit characteristics of the competitive

equilibrium to describe our estimation strategy, the planning problem is useful to de-

scribe the details of the model’s specification succinctly. Let µt(z
t) denote the time t

distribution of cities across productivity histories. The planning problem is:

max
{Ct,Kbt+1,Kht+1,y(z

t),lb(z
t),lh(z

t),n(zt),
kb(z

t),kh(z
t),kft+1(z

t),h(zt)}∞t=0

∞∑
t=0

βt lnCt + ψ

∞∑
t=0

βt
∑
zt

µt(z
t)n(zt) ln

h(zt)

n(zt)
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subject to: Ct + Γbt [Kbt+1 − (1− κb)Kbt] + Γht [Kht+1 − (1− κh)Kht]

+ Γft

∑
zt

µt(z
t)
[
kft+1(z

t)− (1− κf )kft(z
t−1)

]
≤

[∑
zt

µt(z
t)y(zt)η

]1/η

(3)

y(zt) ≤ [Υtzt]
(1−α)ϕ x(zt)

λ−1
λ lb(z

t)1−ϕkb(z
t)αϕn(zt)(1−α)ϕ, ∀zt (4)

h(zt) ≤ lh(z
t)1−ωkh(z

t)ω, ∀zt (5)

lh(z
t) + lb(z

t) ≤ kft(z
t−1)ζ , ∀zt (6)∑

zt

µt(z
t)kb(z

t) ≤ Kbt (7)∑
zt

µt(z
t)kh(z

t) ≤ Kht (8)∑
zt

µt(z
t)n(zt) ≤ Nt (9)

with Kb0, Kh0, kf (z0), x(z
t), and {Υt,Γbt,Γht,Γft, Nt, z

t}∞t=0 given. The variables Γbt,

Γht, and Γft denote the rates at which consumption goods can be transformed into the

different kinds of investment. These variables and the Hicks-neutral technology Υ are

primitive sources of growth in the model, but for now we assume they are all constant

so that the model is stationary. The parameters ω, ζ, η, and ψ denote, respectively,

the share of structures in housing services, the returns to augmenting raw land with

infrastructure, the elasticity of substitution of the city goods in the production of the

final good, and the weight on housing services in preferences. We restrict ω ∈ [0, 1],

ζ ∈ [0, 1], η ≤ 1, and ψ ≥ 0. Equation (3) is the aggregate constraint on final goods.

Equation (4) combines (1) and (2) for each productivity history. Equations (5) and

(6) are the local resource constraints for housing services and finished land. In the

latter we normalize the quantity of raw land in a city to one. Lastly, equations (7)–(9)

are the aggregate resource constraints for business capital, residential structures, and

employment.4

4The underlying micro-foundations of the density externality involve local intermediate goods,
which do not appear anywhere in the statement of the model because it is written in terms of final
goods. Labor and capital include the factors of production used to produce local intermediate goods.
See Ciccone and Hall (1996) for more details.
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Following Kehoe, Levine, and Romer (1992), we find competitive equilibrium al-

locations as the solution to this optimization problem such that x(zt) = y(zt)/lb(z
t).

Equilibrium prices then come from the Lagrange multipliers on the constraints. The

details of this mapping along with the first order conditions of the planning problem

are described in DFW. There we also show how the first order conditions for the

planning problem correspond to the agents’ first order conditions in the competitive

equilibrium. We refer to the agents’ first order conditions below when describing our

empirical strategy.

We have limited results on the existence and uniqueness of the competitive equi-

librium. When λ = 1, the planning problem has a concave objective and convex

constraint set so a unique competitive equilibrium exists, and the allocations are

Pareto-efficient. When λ > 1, the allocations are not efficient, and we have no

general existence and uniqueness results.5 The issue is that the externality induces

increasing returns to labor, which in turn implies that some cities could be unoccu-

pied. However, in DFW we show that for the special case without housing, ψ = 0, if

ηλϕ < 1, there is a unique equilibrium in which all cities are occupied. The restric-

tion on parameters guarantees that the complementarity of city-specific goods and

congestion from diminishing returns to finished land provide sufficient curvature to

offset the increasing returns. Including housing provides additional curvature, so we

expect that existence and uniqueness extend to the general case. Below we discuss

numerical solutions to the model with housing and λ > 1. Nevertheless, equilibrium

uniqueness remains an open question in this case.

We now emphasize several important features of our model, starting with the role

of finished land in determining the effect of agglomeration on aggregate growth. For

agglomeration to influence growth, output density must grow, and density growth

only happens if the supply of finished land grows more slowly than output. Finished

land growth in turn depends on the degree of diminishing returns to infrastructure in

production, ζ. This parameter is therefore key to the ultimate effect of agglomeration

on growth. Land also plays an essential role in our model because it has competing

5The growth and cities papers cited in the introduction focus on efficient allocations derived from
planning problems that take into account any externalities. The exception is Black and Henderson
(1999), who examine competitive allocations that are inefficient. They argue that the information
and technological requirements necessary to sustain efficient allocations are implausible.
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uses in production and housing. This model feature is important for our empirical

analysis because it implies that we can price finished land using housing rents.

Our model exhibits non-trivial cross-section and time-series variation in housing

rents, wages, and output prices, all of which are important in our empirical work. Be-

cause local infrastructure is predetermined, idiosyncratic productivity shocks induce

variation in housing rents. Variation in wages occurs because the household bal-

ances sending workers to high productivity cities with their preferences for housing.

The price of city-specific output varies if η < 1 in the production of the final goods

from intermediate goods. Notice that because infrastructure is predetermined, wages,

rents, and output prices are predictable. This predictability justifies our instrumental

variables strategy to identify the key parameter λ described below.

The model includes several assumptions that we have made for convenience, but

only some affect our empirical work. First, non-infrastructure capital is costlessly

allocated across cities contemporaneously with the TFP shock, and we do not impose

a non-negativity constraint on city-level investment. These assumptions imply a

single economy-wide rental price for non-infrastructure capital and thus allow us

to avoid measuring local prices for capital services in our empirical work. While

the non-negativity assumption is essential for this result, we can relax the capital

allocation assumption. In particular, if the TFP shock occurs one period after the

allocation of non-infrastructure capital, then rental rates are equal across cities up

to an expectation error. Our instrumental variables estimation is robust to having

this kind of error term. Second, infrastructure can be put in place within a single

year, and labor mobility is costless. These assumptions are inconsequential because

they can be relaxed without affecting the equations we use in our estimation. Third,

we assume that the density externality immediately impacts TFP and that firms

make factor input decisions contemporaneously with the TFP shock. Relaxing these

assumptions can affect our estimation, and we examine the consequences when we

discuss our empirical results. Finally, all of these assumptions can be relaxed without

affecting the balanced growth path discussed next.
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2.4 Balanced Growth

To study growth, we assume:

Γjt = γ−t
j , j = b, f, h;

Υt = γta;

Nt = γtn.

The parameter γj > 0 is the growth rate of the technology for producing the j-type

investment good relative to that for consumption. If γj ̸= 1, the corresponding invest-

ment technology exhibits a trend. We consider trends in the investment technologies

because they exist empirically and, similar to Greenwood et al. (1997), they influence

our estimates. We also allow for growth in the Hicks-neutral technology and the

number of households Nt, given by γa > 0 and γn > 0. Along the balanced growth

path, the average growth of city-specific output equals the constant rate of aggregate

output growth. The city-specific variables in the model’s competitive equilibrium

fluctuate around this path. This concept of balanced growth is equivalent to the one

considered by Eaton and Eckstein (1997), Rossi-Hansberg and Wright (2007), and

Córdoba (2008).6

We now use the model’s resource constraints to derive the balanced growth rate

of per capita consumption as a function of the exogenous growth rates of technology

and population. The aggregate resource constraint (3) implies that per capita con-

sumption and output growth both equal per capita growth in consumption units of

each of the three aggregate capital stocks. In particular,

gc = γ−1
j gkj , j = b, f, h, (10)

where gc denotes the growth rate of consumption and gkj denotes the growth rate of

j-type capital. The city-specific land constraints (6) imply that the growth rate of

finished land per capita, gl, satisfies:

gl = γζ−1
n gζkf . (11)

Imposing the equilibrium condition x = y/lb in the city-specific output resource con-

straint (4) and solving for output, we obtain the final ingredient of the balanced

6The transformation of the model with growth into the stationary planning problem considered
in the previous section is standard. See DFW for the details.
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growth formula:

gc = γ(1−α)δ
a gl

1−δgkb
αδ, (12)

where the parameter

δ ≡ ϕλ

measures the effect of agglomeration on productivity net of diminishing returns from

congestion. Replacing gl and gkb in (12) using (10) and (11) and solving for gc yields:

gc = γ
(1−α)δ

1−δα+(δ−1)ζ
a γ

αδ
1−δα+(δ−1)ζ

b γ
ζ(1−δ)

1−δα+(δ−1)ζ

f γ
(1−ζ)(δ−1)

1−δα+(δ−1)ζ
n . (13)

Equation (13) relates per capita consumption growth to the growth in technology

and population. This relationship depends on the size of agglomeration effects, δ, and

the returns to infrastructure in producing finished land, ζ. Examining the first two ex-

ponents in (13) shows that agglomeration amplifies the impact of neutral and business

investment technological growth, but only with diminishing returns to infrastructure,

ζ < 1. Intuitively, when ζ = 1, finished land grows too fast and limits the growth of

density. For example, we see from (10) and (11) that if ζ = γf = 1, then land growth

keeps pace with output growth and density does not grow at all. Next, if δ > 1,

consumption growth increases with population growth when ζ < 1, and consumption

growth decreases with infrastructure technology growth when ζ > 0.7 Empirically,

infrastructure technology grows more slowly than consumption, so γf < 1. In this

case, if δ > 1, then relatively slow infrastructure technical change limits the expansion

of finished land, thereby raising density and consumption growth. In sum, diminish-

ing returns to infrastructure are critical if agglomeration is to increase consumption

growth via growth in population, neutral technology, or business investment technol-

ogy. However, even if ζ = 1, agglomeration can raise consumption growth because of

the relatively slow growth of finished land that arises from γf < 1.

A more intuitive expression for gc can be derived from the first order condition

for finished land in intermediate goods production. This condition states that expen-

ditures on finished land by intermediate goods producers in a city equal a constant

fraction of that city’s output in consumption units. Therefore, consumption growth

7The dependence of per capita economic growth on population growth is a feature shared by
models of endogenous technical change. Although some empirical tests of this dependence (e.g.
Levine and Renelt 1992), are inconclusive, Kremer (1993) provides supportive evidence.
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equals the product of the growth rates of the stock of finished land and the average

rent on land, gpl :

gc = glgpl . (14)

Replacing gl in (12) using (14) yields:

gc = γaγ
α

1−α

b g
δ−1

δ(1−α)
pl . (15)

Equation (15) relates per capita consumption growth to neutral and business in-

vestment technological change and to growth in the rental price of land. If agglomer-

ation and congestion effects cancel, δ = 1, then consumption growth is the same as in

the neoclassical growth model with neutral and investment-specific technical change

and without land. The additional term shows that the impact of agglomeration on

growth depends on the presence of a trend in land rents. If rents are growing, gpl > 1,

then equation (14) implies land growth does not keep pace with output growth, and

the density of economic activity grows. If agglomeration dominates congestion, δ > 1,

then this mechanism is an additional source of growth. Without the effect of density

on productivity, λ = 1 and δ = ϕ, equation (15) implies:

gc = γaγ
α

1−α

b g
ϕ−1

ϕ(1−α)
pl .

If gpl > 1 and 0 < ϕ < 1, consumption growth is lower than predicted by technical

change alone, because of decreasing returns to land in production.

3 Empirical Strategy

We now discuss how to estimate of the effect of local agglomeration on aggregate

consumption growth by using equation (13), which relates consumption growth to

underlying technology and population growth. In a competitive equilibrium invest-

ment good (and capital) prices equal the inverse of the corresponding investment

technology. Therefore we can estimate γa from (13) as:

γ̃a = g̃
(1−α)δ+(ζ−1)(δ−1)

(1−α)δ
c γ̃

(1−ζ)(1−δ)
(1−α)δ

n g̃
α

(1−α)
pb g̃

ζ 1−δ
(1−α)δ

pf , (16)

where x̃ denotes the point estimate of x and gpj denotes the growth rate of the

price of investment good j. Next, we construct g∗c , the counterfactual growth rate
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of consumption without agglomeration, δ = ϕ, from (13) and substitute for γ̃a using

(16):

g∗c = g̃
1−αδ−ζ(1−δ)

λ[1−αϕ−ζ(1−ϕ)]
c γ̃

(1−λ)(1−ζ)
λ[1−αϕ−ζ(1−ϕ)]
n g̃

ζ(1−λ)
λ[1−αϕ−ζ(1−ϕ)]
pf , (17)

where δ corresponds to its empirical value. We use

Λ =
g̃c − g∗c
g∗c − 1

(18)

to measure the increase in per capita consumption growth due to agglomeration.

Estimating Λ is the objective of our empirical work. To this end, we need estimates

of the growth rates gc, gpb , gpf , and γn, as well as the parameters λ, α, ϕ, and ζ. Our

strategy is to use relationships predicted by the model to form a sufficient number

of moment conditions to identify all the parameters and growth rates necessary for

obtaining Λ. We identify λ using panel data for 22 cities in the United States from

1978 to 2009. For the remaining parameters and growth rates, we use aggregate time

series on prices and quantities. Our GMM estimation integrates the micro and macro

data so that estimates of the standard error of Λ includes sampling uncertainty in

both. The discussion below is relatively brief; see DFW for more detail.

3.1 Identification with a Panel of US Cities

We identify λ using the model’s predicted relationship between measured TFP and

the rental price of land in units of the locally produced good. Imposing the equilib-

rium conditions that x = y/lb in each city and applying a log transformation to the

definition of TFP in (2) yields TFP for city i at date t:

ln ait =
λ− 1

λ
[ln yit − ln lbit] + (1− α)ϕ [ln zit + lnΥt] . (19)

We do not have data on city-level output or land to measure the density externality

directly. However, the density externality can be expressed in terms of observable

factor prices by exploiting the intermediate goods producers’ and housing service

providers’ first order conditions for land use. Before making these substitutions, for

any generic variable, xit, we subtract the cross-sectional time t mean of lnxit and

define:

x̂it ≡ ln (xit)−
1

N

N∑
j=1

ln (xjt) .
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By construction, x̂it is mean zero in every year. This transformation eliminates vari-

ation in the aggregate technology. Substituting factor prices into (19) then yields:

âit =
λ− 1

λ
r̂it + (1− α)ϕẑit (20)

with local-good-denominated land rents, r̂it, measured as:

r̂it =
1

1− ω
r̂hit − p̂yit, (21)

where rh denotes the rental price of housing services and py denotes the output price.

Our estimation of λ is built around (20) with conventional measurement of TFP

and data on housing rents and output prices. Estimation must address the model’s

prediction that the idiosyncratic technology term, ẑit, is correlated with local-output-

denominated land rents. We address this endogeneity by adopting a natural stochas-

tic process for ẑit that is motivated by two key empirical observations about cities

“Gibrat’s” law” and “Zipf’s law,” (Gabaix 1999). Gibrat’s law for cities states that

their populations follow similar growth processes with a common mean and variance.

Gabaix (1999) shows that if cities satisfy Gibrat’s law, then the probability that the

normalized size of a city is greater than some level S is given by Pr(Size > S) = a/Sb,

where b = 1/(1−Smin/S̄), Smin is the lower barrier of a reflected random walk in lnS,

and S̄ is mean city size. In the case of city population, Smin is presumably small

relative to S̄ so that b ≃ 1. Zipf’s law is that b = 1 for cities.

Although population need not inherit the distribution of productivity, we verify

in Section 6 that if productivity is (approximately) exponentially distributed in our

model, then population, which is endogenous, is as well. Furthermore, we discuss

evidence that city-specific technology is indeed exponentially distributed in its upper

tail. These considerations motivate the following process for idiosyncratic technology:

ln zit+1 = max {ln zit + εit+1, ln zmin,t} ;

ln zmin,t = ln zmin + ln z̄t;

z̄t = Etzit;

εit+1 ∼ N(0, σ2
ε).

This process characterizes city-specific technology as a random walk with a reflecting

barrier. Gabaix (1999) shows that there exists an invariant distribution for the differ-

ences ln zt− ln zmin,t and that the invariant distribution has an exponential upper tail.
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In our empirical work, we sample 22 cities from the upper tail of the city distribution

and assume that ln zit > ln zmin,t for these cities over the sample period.

With this stochastic process ∆ẑit = εit, where ∆ is the first-difference operator.

It then follows from (20) that:

∆âit =
λ− 1

λ
∆r̂it + (1− α)ϕεit. (22)

Although εit is correlated with the other variables in (22), we can easily address

this endogeneity with instrumental variables. Because the error term in (22) is inde-

pendently distributed across time and space, any variable dated t − 1 and earlier is

orthogonal to εit, and hence is a valid instrument. Consequently, we estimate λ using

the moment conditions:

E

{[
∆âit −

λ− 1

λ
∆r̂it

]
× v̂it−j | Ω

}
= 0 (23)

for valid instruments v̂it−j, j ≥ 1 and for conditioning information Ω equal to a date

t, a city i, or the null set. We discuss our selection of instruments below.

It is apparent from equation (23) that our estimation identifies λ through both

the time series and the cross-section covariation of TFP growth with the instrumental

variable forecast of growth in local-good-denominated land rents. A positive corre-

lation between TFP growth and predicted land rents indicates that λ > 1 and the

externality is operative. Predicted increases in land rents lead firms to economize on

land, thereby raising density and TFP growth. In our model, TFP growth is posi-

tively correlated contemporaneously with realized land rents regardless of the density

externality. Nevertheless, our instrumental variables strategy identifies λ because

predicted rents are orthogonal to the TFP shock driving the contemporaneous cor-

relation. In practice, other shocks, such as to product demand, property taxes, and

amenities, contribute to variation in land rents. The presence of such shocks is help-

ful because it reduces the standard error of our estimate of λ. It is straightforward

to introduce these extra sources of variation into the model, but doing so does not

change (23) because the relevant first order conditions are unchanged.

To implement the estimation, we measure log TFP as the difference between the

log of output and the factor-share weighted sum of the log of factor inputs. From (1),

ln ait = ln yit − (1− ϕ) ln lbit − αϕ ln kit − (1− α)ϕ lnnit. (24)
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We use the first order conditions for intermediate good producers’ and housing service

providers’ factor input choices to replace the quantities that we cannot measure with

observable housing rents, wages, or local good prices. Combining this substitution

with the equality of rental rates of non-infrastructure capital across cities, we obtain

the following measurement equation for TFP:

âit =
1− ϕ

1− ω
r̂hit + (1− α)ϕŵit − p̂yit, (25)

where wit denotes the local wage rate.

So far we have assumed that workers are homogeneous. Ignoring cross-sectional

variation in labor quality biases this measure of TFP because denser urban areas

attract higher skilled workers. To address the bias, we follow Ciccone and Peri (2006)

and consider “skilled” and “unskilled” workers as imperfect substitutes in producing

total labor services. We now derive a version of (25) that incorporates heterogeneous

workers in a way that does not affect the balanced growth path of the model.

Suppose that the effective labor input in (1), n, is a constant elasticity of substi-

tution composite of unskilled, nu, and skilled labor, ns:

n =
[
σnξ

u + (1− σ)nξ
s

]1/ξ
,

where 0 < σ < 1 and ξ ≤ 1. Effective labor satisfies the intermediate good produc-

ers’ first order condition for labor as before. Let wu and ws denote the wage rates

of unskilled and skilled workers. The first order conditions for intermediate goods

producers’ choices of unskilled and skilled labor can be used to express the wages of

skilled workers as:

ws = (1− σ)σ1/ξ−1(1− α)ϕws1/ξ−1mξ−1,

where w denotes the implicit wage for the composite labor input, s ≡ (wunu +

wsns)/(wunu), and m ≡ ns/nu. Substituting for composite wages, w, in (25), we

arrive at the following measure of TFP used in our estimation:

âit =
1− ϕ

1− ω
r̂hit + (1− α)ϕ

[
ŵsit −

1− ξ

ξ
ŝit − (ξ − 1) m̂it

]
− p̂yit. (26)

Equation (26) reduces to equation (25) if ξ = 1, that is, if unskilled and skilled labor

are perfect substitutes. We estimate the substitutability parameter ξ with λ using

the same set of moment conditions in (23).
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3.2 Identification with Aggregate US Data

Identifying λ and ξ using (23) requires that we also estimate ω, α, and ϕ. To complete

the measurement of Λ, we need to estimate gc, gpf , γn, and ζ. We identify the growth

rates using the moment conditions:

E {(lnXt − ln(g)t) · t} = 0, X = C,Pf , N and g = gc, gpf , γn, (27)

where E denotes the unconditional expectations operator and Pf denotes the price

of infrastructure investment goods. Equation (27) assumes that lnXt is de-meaned

prior to the analysis. (Our standard errors incorporate the sampling uncertainty in

these means.)

We identify ω, the share of structures in housing services, using the housing ser-

vice providers’ first order conditions, which equate two ratios: the ratio of residential

structures income to finished land income and the ratio of the respective share pa-

rameters in the production function for housing services. We cannot measure these

income flows, so instead we measure the values of the underlying assets and relate

these values to the income flows using an arbitrage condition for the provision of

finished land.

Finished land is raw land combined with infrastructure. It follows that in each

city the value of a unit of finished land satisfies the following arbitrage condition:

plit = Et|i

{
1

R

[
rlit+1 + (1− κf )

ζplit+1

]}
, (28)

where Et|i is the expectation at time t for city i; rli is the rental rate of finished land

in city i; pli is the price of finished land in city i; and R ≡ 1/β is the interest rate.

Equation (28) states that the value of an additional unit of finished land equals the

expected discounted rent from that land plus the value next period of the finished

land with the un-depreciated infrastructure. Along a balanced growth path:

Etplit+1 = gplEtplit, (29)

where Et is the expectation over all cities at time t. Since EtEt|ixit = Etxit for any

random variable xit, it follows from (28) and (29) that:

Etplit =
gpl

R− (1− κf )ζgpl
Etrlit. (30)
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That is, the average value of finished land is proportional to the average rent on that

land.

The moment condition we use to identify ω is then:

E

{ ∑
plitlhit∑

(Phtkhit + plitlhit)

[
ω

1− ω

R/gpl − (1− κf )
ζ

R/gph + κh − 1
+ 1

]
− 1

}
= 0, (31)

where the summations are over all cities and Ph is the price of residential structures.

We estimate the depreciation rates in this expression as their sample average values:

E

{
κj −

PjtDjt

PjtKjt

}
= 0, j = f, h (32)

where Djt is real depreciation of j-type capital. The growth rate of the price of

residential structures, gph , is identified using the analogue of (27). To estimate gpl ,

we use another implication of the housing service providers’ first order conditions:

E {(lnEtrhit − [(1− ω) ln(gpl) + ω ln(gph)] t) · t} = 0. (33)

Equation (33) states that the growth rate of the (de-meaned) log of average housing

services rent is a weighted average of the log growth rates of finished land and residen-

tial structures prices. This relationship relies on structures and land rents inheriting

the trends of their respective asset prices, which in turn follows from the household’s

first order conditions for capital accumulation.

Next we consider ζ, α, and ϕ. To identify ζ, we exploit connections between

value and income analogous to (30), which allow us to derive the identifying moment

condition:

E

{
R/gpl − (1− κf )

ζ

R/gpf − (1− κf )
ζ −

∑
Pftkfit∑

(plitlbit + plitlhit)

}
= 0.

We identify α and ϕ using labor’s share of total income and finished land’s share of

non-labor income:

E

{ ∑
witnit∑

[witnit + rlitlbit + rbtkbit]
− ϕ(1− α)

}
= 0;

E

{ ∑
plitlbit∑

[Pbtkbit + plitlbit]

[
αϕ

1− ϕ

R/gpl − (1− κf )
ζ

R/gpb + κb − 1
+ 1

]
− 1

}
= 0,

where rb and Pb are the rental rate and price of business capital. The second condition

again exploits connections between value and income analogous to (30) and adds gpb
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and κb as parameters to estimate. We identify these additional parameters using the

analogues of (27) and (32).

In sum, these moment conditions are sufficient to obtain the six proximate inputs

into Λ: gc, gpf , λ, α, ϕ, and ζ. Estimating these inputs in turn requires moment

conditions to identify all the depreciation rates and investment price growth rates

in the model, plus ω. Only two parameters in our model are not used: the weight

on housing services in preferences, ψ, and the parameter governing the elasticity of

substitution of the city goods, η (β is implicit in R). In total, there are 13 moment

conditions involving aggregate variables.

3.3 Estimation

We estimate Λ in three steps. First, we collect the 13 moment conditions involving

aggregate variables into a vector-valued function Ψ (Xt, θ), so that:

EΨ(Xt, θ) = 0. (34)

Here, Xt is a vector of the aggregate variables included in these moment conditions,

and θ is a parameter vector given by:

θ ≡
[
κb, κs, κf , gpl , gpb , gph , gpf , γn, gc, α, ϕ, ω, ζ

]′
.

Because the dimensions of Ψ and θ are equal, this system of moment conditions is

exactly identified. We estimate equation (34) by GMM, in which we use a Newey-

West weight matrix with a lag length of 2. Next, we estimate λ and ξ using the

moment conditions in (23) and the measure of TFP given in (26). This estimation

requires that we plug in the estimates of ω, α, and ϕ from the first step into (23).

To account for the sampling variation associated with these three plug-in parameters,

we adjust the weight matrix using their respective influence functions as in Newey

and McFadden (1994). We also cluster the weight matrix at the city level. Third,

we substitute the point estimates for gc, gpf , δ = λϕ, α, ϕ, and ζ into (18) to obtain

Λ. To calculate the sampling variance of Λ, we need the joint covariance matrix

of these six parameters, which we calculate by stacking the influence functions of

the parameters as shown by Erickson and Whited (2002). After this calculation,
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a standard application of the delta method gives the variance of Λ. See DFW for

details.

We now describe our choice of instruments, vit−j, and conditioning set, Ω, needed

for estimation of (23). Recall that any variable dated t − 1 or earlier is orthogonal

to εit and hence is a valid instrument. To allow for the possibility that our data

contain i.i.d. measurement error, we use variables dated t − 2 and earlier because

first-difference measurement errors are correlated with instruments dated at t − 1.

Next, two kinds of conditioning sets have been proposed for traditional dynamic

panel estimation, with fixed sample length T and large N . For any instrument x, the

moment condition:

E{xit−2εit | Ω} = 0

holds for each date, Ω = t, for each city, Ω = i, and therefore also unconditionally. In

one approach, (e.g. Holtz-Eakin, Newey, and Rosen 1988) expectations of each date

t cross-section are used so that the empirical counterpart to the moment condition is

evaluated across cities at each date t:

N∑
i=1

xit−2εit = 0. (35)

This approach involves T − 2 moment conditions for each instrumental variable x. In

the other, (e.g. Anderson and Hsiao 1982) the unconditional expectation is used and

the sample moment condition is evaluated over cities and time:

T∑
t=3

N∑
i=1

xit−2εit = 0. (36)

This second approach involves one moment condition per instrumental variable.

The first approach has the advantage that it exploits more information and there-

fore is more efficient. It is usually applied in cases with large N and small T because

the cross-sectional average is likely a good measure of the cross-sectional expectation.

In this case, levels are usually used as instruments for growth rates to conserve ob-

servations. In contrast, in our case with relatively large T and small N , the second

approach might be warranted because with small N the cross-sectional average could

be a poor estimate of the cross-sectional expected value.
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The choice between the two approaches depends on the quality of the instruments

in each approach. We cannot use the weak-instrument tests surveyed in Stock, Wright,

and Yogo (2002) because they do not apply to nonlinear GMM estimators. Instead,

we make our instrument choice using the test in Wright (2003) for under-identification

of a nonlinear GMM model. The null hypothesis of this test is that the gradient of the

moment conditions with respect to the parameters is not of full rank. It is therefore

literally a test of under-identification rather than of weak identification. Although

we cannot therefore test for weak instruments, the Wright test is conservative in the

sense that its size is less than its significance value.

The variables in our instrument set are the measured variables in (26) plus log

house prices and log per capita income. We consider four possibilities: twice-lagged

instruments in levels and twice-lagged instruments in differences, where in each case

we consider moment conditions based on both (35) and (36). For the moment condi-

tions from (35), we never reject the null of an under-identified model. For the moment

conditions from (36), we strongly reject the null of an under-identified model (p-value

of 0.006) for the instruments in differences, but we cannot reject the null of an under-

identified model for the instruments in levels (p-value of 0.051). We therefore use the

moment conditions based on (36) with twice lagged differences as instruments.

To assuage concerns about the validity of asymptotic theory for a small panel such

as ours, we conduct a Monte Carlo experiment in which we estimate our model on

simulated data that approximates our actual data closely in terms of means, variances,

covariances, and autocorrelations. Details are in DFW. We find that our procedure

produces unbiased estimates and that the t-tests on our parameters of interest tend to

under-reject slightly in samples of the size we consider; that is, they are conservative.

4 Data

This section describes our annual data, which span the period 1978-2009. We begin

with the panel data for the moment conditions (23) and then discuss the aggregate

data for the moment conditions (34). Details concerning the data are in DFW.
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4.1 Panel Data

A location in our model is a land mass with at least some infrastructure where house-

holds live and work. We use Metropolitan Statistical Areas (MSAs) to represent

these locations. The geography of an MSA is a natural empirical counterpart to

our locations because the criteria for defining them is explicitly economic, based on

commuting-to-work patterns.8 MSAs are defined as contiguous combinations of coun-

ties, but the included counties differ over time and by data source. However, each

MSA comprises a core set of counties that is common across data sources and time.

This core includes a substantial majority of the population corresponding to any

particular MSA definition.

MSA-level panel data on output prices, the labor market, and housing rents come

from several sources. We create MSA-specific price indices for output, pyit, with data

from the Bureau of Economic Analysis (BEA). These indices are weighted averages of

industry-specific price indices, with weights equal to the share of total earnings paid

to employees in each industry. The mix of industries varies across MSAs and over

time within each MSA, and prices vary by industry, so output prices vary by MSA.

We construct MSA-level labor market variables with data from the March Current

Population Survey. We define skilled workers to have at least four years of college,

and unskilled workers to have fewer than four years of college. The average hourly

wage of skilled workers, wsit, is total wages paid to skilled workers divided by their

total hours worked; the ratio of skilled to unskilled labor, mit, is the ratio of total

hours worked for these two groups; and the inverse share of wages going to unskilled

workers, sit, is the total wage bill divided by wages paid to unskilled workers.

We construct MSA-level data on housing rents, rhit, by merging data from the

1990 Decennial Census of Housing (DCH) with housing rental price indices from the

Bureau of Labor Statistics (BLS). We estimate the level of housing rents by MSA in

1990 with the DCH data. We then use the MSA-specific BLS price indices for shelter

to extrapolate rents backwards from 1990 to 1978 and forwards to 2009. Annual

average housing rents are measured by averaging across the MSAs.

8Ciccone and Hall (1996) define a location to be a county. Rozenfeld, Rybski, Gabaix, and
Makse (2011) propose an alternate definition of a location based satellite imagery that emphasizes
geographically dense areas of integrated economic activity.
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When estimating (23), we use two additional MSA-level variables as instruments:

per-capita personal income and house prices. Personal income is from the BEA’s Local

Area Personal Income Tables. House prices are measured using the repeat-sales price

indices for existing homes produced by the Federal Housing Finance Agency.

After merging all non-missing data on output prices, housing rents, and labor

market variables, the sample includes 22 MSAs covering the 1978-2009 period. This

sample of cities accounts for 37% of the U.S. population. With the exception of aver-

age housing rents in equation (33), the moment conditions involving these variables

are based on within-year deviations from averages, and therefore in these cases we

do not adjust nominal variables for overall price inflation. Average housing rents are

deflated by the consumption price index described in the next sub-section.

4.2 Aggregate Data

Data on aggregate capital stocks, their depreciation rates, and their price indices are

from the Fixed Asset Tables, produced by the BEA. Residential structures, Kst, are

the BEA measure of residential fixed assets. Business capital, Kbt, is defined as all

fixed assets (private and government) plus consumer durable goods, less residential

structures and infrastructure capital. The aggregate stock of infrastructure capital,

Kft ≡
∑
kfit, is defined as all government-owned highways and streets, transporta-

tion structures, power structures, and sewer and water systems, plus all privately

owned power and communication structures, transportation structures, and struc-

tures related to water supply, sewage and waste disposal, public safety, highways and

streets, and conservation and development. We think of infrastructure as any struc-

ture that makes the underlying land more productive for any end user, business or

household. Our measurement of infrastructure capital is largely consistent with the

definition proposed by Cisneros (2010) as “basic systems that bridge distance and

bring productive inputs together.” Our data for depreciation, Dst, Dbt and Dft, and

investment price indices are consistent with our definitions of the capital stocks. The

real investment prices, Pst, Pbt, and Pft, are the investment price indices divided by

our consumption deflator, described below.

We construct value shares as follows. Data for measuring the share of housing

value attributable to finished land,
∑
plitlhit and

∑
(Pstksit + plitlhit), are from an
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update to the data described in Davis and Heathcote (2007). To measure the share

of land in the sum of the values of business capital and land, we need
∑
plitlbit and∑

(Pbtkbit + plitlbit), which we obtain from the BEA’s Flow of Funds Accounts and

Fixed Assets Tables. To measure the share of finished land value attributable to

infrastructure, we need measures of the value of infrastructure capital,
∑
Pftkfit, and

the value of all finished land,
∑

(plitlbit + plitlhit). The former is just the product

of the price and quantity of infrastructure described above, PftKft. The business

portion of the latter is from the Flow of Funds Accounts, and the housing portion

is from Davis and Heathcote (2007). Labor income,
∑
witnit, is from the National

Income and Product Accounts (NIPA). Total income,
∑

(witnit + rlitlbit + rbtkbit), is

defined as Gross Domestic Income, as reported by the BEA, plus an estimate of the

service flow from the stock of durable goods and less housing services.

Finally, we construct real per capita aggregate consumption as nominal consump-

tion divided by its price index, divided again by the population. Nominal consump-

tion is total consumption from the NIPA, less consumption of housing services and

expenditures on durable consumption goods, plus government consumption expendi-

tures and our estimate of the service flow from the stock of consumer durable goods.

The price index for consumption is consistent with this quantity measure. The annual

population data are from the BLS and correspond to the non-institutional population

over the age of 16.

5 Empirical Findings

If λ = 1, there is no agglomeration, and it cannot affect aggregate growth. Therefore,

we begin by confirming that agglomeration is operative; that is, λ > 1. We then

discuss our baseline estimates of the effect of agglomeration on growth, Λ, as well as

the remaining parameter estimates. Finally, we discuss several model specification

tests and consider the effects of some of our assumptions on the baseline estimates.
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5.1 Confirmation of λ > 1

The top row of Table 1 displays the baseline GMM estimate of λ. This estimation

produces point estimates of all of the parameters and accounts for sampling uncer-

tainty in the measurement of TFP and the rental price of land.9 We estimate λ to

be 1.069 and with a standard error of 0.03. This point estimate is significantly larger

than 1, and it implies that a 10% increase in output per unit of land increases local

TFP by 0.62%. We thus conclude that the agglomeration externality is operating in

our sample of cities.

To build confidence in this conclusion, and to illustrate the source of identification

of λ, we consider several informal estimation strategies that in principle should yield

similar results. Suppose we measure land prices and TFP using (21) and (26), with

the parameters taken from the same GMM estimation that produces our estimate of

λ, and then use these estimated variables as data in (22).10 In this case, we can use

linear methods to estimate λ from the coefficient on land prices, which is a function

of λ. We consider both OLS and 2SLS estimation, where in each case we use the data

in three ways: we pool the entire panel, we consider each cross-section separately,

and we consider each time series separately. In the second two cases, we report the

average estimate and calculate standard errors, as in Fama and MacBeth (1973). For

2SLS, we use the same instrument set as we do in our GMM estimation.

The rest of Table 1 reports these results. The OLS and 2SLS panel estimates

are close to those based on cross-section or time-series data only. We thus confirm

the model’s prediction that identification comes from both dimensions, so that the

samples should yield similar information. All but the 2SLS cross-section estimates

are statistically significant. Lending credibility to the instruments underlying the

baseline estimates, the F-statistic from the first stage of 2SLS with the pooled sample

(not shown) is 40.8, far exceeding the criterion for instrument quality in Stock et al.

(2002).

Figure 1 plots the pooled data on measured TFP and land rents, along with the

associated OLS and 2SLS regression lines, with the former based on contemporaneous

9We assume an interest rate of R = 1.05. Our estimates are largely insensitive to this choice, and
our standard errors are nearly invariant to including the sampling variation from estimating R.

10We report the complete set of GMM parameter estimates in Table 2.
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land rents and the latter based on land rents predicted at t − 2 by the instruments.

These regression lines have slopes equal to (λ̃ − 1)/λ̃, where λ̃ refers to the corre-

sponding point estimate of λ in Table 1. Notice the clustering of observations along

the 2SLS regression line. To confirm this impression, we re-estimate the slope of the

regression line, trimming the data if in absolute value measured TFP exceeds 0.1 and

predicted land rents exceed 0.05. The resulting slope of 0.086 is nearly identical to

its unconditional value of 0.090; outliers are not driving our results.

5.2 Baseline Estimates of Λ and its Underlying Parameters

Having confirmed that agglomeration is operative in our sample of cities, we now ad-

dress the question of its contribution to aggregate growth. Table 2 reports the param-

eter estimates from our baseline GMM estimation, along with asymptotic standard

errors. We estimate that local agglomeration raises aggregate per capita consumption

growth by Λ = 10.2% (standard error 5%), which we find despite our relatively small

estimate of the net impact of density on the level of productivity, δ = ϕλ = 1.041

(0.016). We conclude that the aggregate effect of statistically significant local ag-

glomeration is itself significant.

Are these agglomeration effects economically significant? The estimate in Table

2 of per capita consumption growth of 1.7 percent per year would be 1.51% in the

absence of local agglomeration. From our model, it is straightforward to show that per

capita consumption and housing would have to be 3% larger each year in perpetuity

to compensate individuals for the absence of the aggregate growth that stems from

local agglomeration.11 This calculation is equivalent to $360 billion in 2009 alone, and

the present value of this compensation is over $7.5 trillion. Thus, seemingly small

local effects of agglomeration have large aggregate consequences.

Our estimate of the impact of local agglomeration on aggregate growth is related

to a large literature that measures the effect of local agglomeration on the local level

of firm productivity and wages. These studies estimate the percentage increase in

productivity or wages due to agglomeration, holding fixed all factors of production.

Our estimate of 4.1% for the net effect of agglomeration on local productivity, δ, is

11This calculation uses the value of ψ = 0.2 discussed in Section 6. See DFW for the details.
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in the middle of the range of 2% to 6%, as estimated recently by Combes, Duranton,

and Gobillon (2008) and surveyed by Rosenthal and Strange (2004).12

We now discuss the remaining parameters in Table 2, focusing on the most note-

worthy. We estimate the share of infrastructure in finished land, ζ, to be 0.545 (0.053).

We are unaware of any previous estimates of this parameter. Given our estimate of

finished land’s share of production, 1−ϕ, infrastructure’s share of production is 1.4%,

and raw land’s share of production is 1.2%. The latter share is close to the value re-

ported by Ciccone (2002). Our estimate of ζ, combined with estimates of gpf , gc, gpl
and γn, also has implications for the growth rate of per capita finished land, gl. In

particular, gl can be expressed as (gc/gpf )
ζγζ−1

n or, equivalently, gc/gpl . We do not

impose the over-identifying restriction implied by these two expressions in estimation,

but we verify that it is not rejected below. Furthermore, we cannot reject the null

that both expressions equal 1 (p -value 0.99). That is, our estimates imply that along

the balanced growth path, finished land per person is constant, and the density of

economic activity is growing at the same rate as per capita consumption, 1.7% a year.

We estimate that the price of business capital declines at about 0.5% per year

(gpb), and the prices of infrastructure and residential structures rise at 0.6% and 0.8%

per year (gpf and gps). To understand the role of these trends, we re-estimate our

model imposing zero trends, gpb = gpf = gps = 1. The data resoundingly reject this

restriction, but conditional on it, the point estimate for the share of infrastructure

in finished land, ζ, is approximately 1. When ζ = 1 and gpf = 1, equation (17) in

the model implies that agglomeration has no impact on consumption growth. Thus,

these trends in capital prices are key to our finding of an economically and statistically

significant impact of agglomeration on growth.

Our estimate of ξ = 0.545 (0.035) implies an elasticity of substitution between

unskilled and skilled labor of 2.2. This estimate is somewhat larger than the range

of 1.3 to 1.7 reported by Autor, Katz, and Krueger (1998).13 However, as Autor

12As the latter authors describe, researchers focus on what are called “urbanization” and “lo-
calization” effects. Urbanization describes the impact of local output or employment density on
the wages and productivity of all industries in a location. Our approach fits into this framework.
Localization describes the impact of the size of an industry in a location on wages and productivity
in that industry and location. We do not consider localization, although evidence described by
Henderson (2003) and Rosenthal and Strange (2003) suggests it is also an important determinant of
local productivity.

13See also Heckman, Lochner, and Taber (1998) and Krusell, Ohanian, Rı́os-Rull, and Violante
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et al. (1998) emphasize, substantial uncertainty exists concerning the magnitude of

this elasticity. For example, the results in Katz and Murphy (1992) imply that our

point estimate lies within a 95% confidence interval.

5.3 Tests of Model Specification

Table 3 displays results from five tests of the validity of our specification. The first

two rows correspond to tests for serial correlation of the residuals in (23). If the

model is correctly specified, the residuals should exhibit autocorrelation only up to

order one with classical i.i.d. measurement error. We test the null hypotheses of

no second- or third-order serial correlation with a nonlinear version of the test in

Arellano and Bond (1991), finding no rejections. The third test is the Hansen (1982)

and Sargan (1958) J -test of the over-identifying restrictions implicit when estimating

(23). The p-value for this test indicates that the over-identifying restrictions are not

rejected. The fourth row reports our test of the balanced-growth-path restriction

gpl = g1−ζ
c γ1−ζ

n gζpf , which we do not impose in estimation. Table 3 indicates we do

not reject the hypothesis that this condition is satisfied by our estimates. In the last

row we test a condition concerning various growth rates that would hold if finished

land was in constant supply (as opposed to finished land per person, which we find is

not growing.) Because finished land does, in fact, grow, our model would be rejected

if this condition held. However, we easily reject the condition.

5.4 Effects of Model Assumptions on Estimates

We now investigate how some of our assumptions influence the results, beginning

with two departures from Ciccone and Hall (1996) embedded in the model: less than

perfect substitutability of city-specific goods and growth of finished land. Assuming

perfect substitutability, η = 1, involves estimating (23) without using output prices

in the measures of TFP and land rents.14 Assuming no finished land growth involves

setting gpf = gpl = gcγn and dropping the moment conditions used to estimate gpf

(2000).
14With η = 1 and δ > 1, the model might not have a unique solution. Nevertheless, it is interesting

to consider this case to assess the effect of including output prices.
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and gpl from (34). We consider this case even though we reject it (see Table 3) because

it shows how allowing for finished land growth affects our estimates.

Table 4 displays estimates of Λ for these two perturbations, along with the direct

inputs into its calculation and the corresponding baseline estimates reproduced from

Table 2. Omitting output prices raises the point estimate of Λ by almost 30%. This

result is entirely due to the larger estimate of δ, which in turn is indicative of positive

correlations in our sample between output prices and both skilled wages and housing

rents. While the estimate of Λ is larger, it is also less precisely estimated. We therefore

cannot reject the hypothesis that Λ = 0, although we still reject δ = ϕ. Interestingly,

the estimate of δ in this case is very close to estimates in Ciccone and Hall (1996).

Assuming a fixed supply of finished land also raises the point estimate of Λ by about

30%, even though it lowers the estimate of δ. The increase in Λ occurs primarily

because in this counterfactual, gpf is larger than its baseline estimate.

Now we consider relaxing our assumptions that the density externality imme-

diately impacts TFP and that allocation decisions are contemporaneous with the

productivity shock. The details of this analysis are in DFW. Briefly, if we assume the

density externality takes up to two years to affect TFP, our point estimates of δ and

Λ rise by several tenths of a percent, with roughly proportional increases in sampling

uncertainty. If allocations are chosen one period in advance of the productivity shock,

our estimation is unaffected, but for each additional period we must add one more

lag to the instruments for them to remain valid. We consider decisions made two to

three years in advance and find that our point estimates of δ and Λ rise substantially,

in some cases more than doubling. Not surprisingly, adding lags to the instruments

reduces their predictability so that sampling uncertainty rises in these cases.

6 Additional Validation of the Empirical Findings

In this section we use model-generated data to study the model’s implications for

the distribution of city sizes and the viability of our strategy for estimating the key

agglomeration parameter λ. We verify that the model is consistent with Gibrat’s and

Zipf’s laws and show that our empirical strategy accurately identifies λ.
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6.1 Calibration and Solution

For simplicity, we abstract from growth, assume that ω = 0 so that housing consists

only of land, and assume that labor is homogeneous, ξ = 1. We set the consump-

tion share of housing, ψ, to 0.2, which is the average consumption share of shelter in

our sample from NIPA. For the other parameters in Table 2, we use the correspond-

ing baseline estimates. Below we discuss the parameter determining the degree of

substitutability in final goods production, η.

We assume a productivity process that is isomorphic to the one underlying the

estimation:

ln zt = max {γz + ln zt−1 + εt, ln zmin} , (37)

where γz < 0 and εt is i.i.d. normally distributed with mean 0 and variance σ2
ε . We

normalize the lower bound zmin so that the mean of z is 1. This process induces an

invariant distribution for zt that is approximately exponential away from its lower

tail.

Is (37) plausible? To answer this question, we need a measure of the level of

technology, but it cannot be measured with our data because of unidentified fixed

effects that arise from measuring output prices with an index. However, we can use

the results from ?, who construct a measure of the level of city-specific technology

using a similar model. They find that technology is exponentially distributed for the

200 largest U.S. cities. Indeed, plots of the log rank of technology versus the log

level of technology are remarkably similar to the analogous plots for population, with

the exception of different slopes. Population has a slope near -1 (Zipf’s law) and

technology has a slope of about -5. We refer to these slope values as Zipf coefficients.

The parameter γz controls the Zipf coefficient corresponding to (37).

Rather than calibrate γz to match a Zipf coefficient for technology of -5 we take

advantage of results in Luttmer (2007) to simplify our computations. Luttmer (2007)

considers a competitive equilibrium model, in which the distribution of firm size is

driven by a reflected random walk productivity process. He shows that such a pro-

cess induces a firm size distribution with a Zipf coefficient that is proportional to the

Zipf coefficient corresponding to the productivity process. In DFW we verify numer-

ically that the induced distribution of population in our model shares this property.
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Therefore, without loss of generality, we choose γz so that the Zipf coefficient for

productivity equals -20 and set σε = 0.001. These settings simplify our computations

by limiting the domain of the productivity process.15 With this driving process, the

volatility of employment growth is about one-third its empirical counterpart, which

is appropriate because productivity shocks are the only source of variation in our

model, but one of many in our data.

We solve the model as follows. For given values of consumption, aggregate in-

vestment, and a worker’s shadow value, the first order conditions produce the cross-

sectional allocation of capital and workers. The solution is obtained by finding a fixed

point in the economy-wide variables that satisfies four side conditions: consumption

and investment exhaust aggregate production, the allocation of workers sums to one,

city-level investment in infrastructure sums to aggregate investment, and the alloca-

tion of non-infrastructure capital exhausts its stock.16

6.2 Gibrat’s and Zipf’s Laws

We now consider the model’s implications for the size distribution of cities. To assess

whether the model is consistent with Gibrat’s law, we examine its implication that

city growth is independent of city size. To this end, we estimate an OLS regression

of log population growth on log population level using a large sample of simulated

data. The regression coefficient is positive and significantly different from zero, but it

is extremely small and the R2 of the regression is .0001. We conclude that the model

is consistent with Gibrat’s law.

We assess the model’s implications for Zipf’s law by examining whether it can

match the ratio of the Zipf coefficient for technology to that for population, which

in the data is about 5 to 1. The parameter governing the degree of substitutability

among city-specific goods, η, can be chosen to match this ratio. Figure 2 shows log

rank versus log level for technology and population from a sample drawn from the

steady state distribution with η = 0.927.17 Population is approximately exponential

15Low absolute-value Zipf coefficients imply very wide domains that require many grid points.
16In the cases we have considered, the algorithm is well-behaved and yields a unique solution from

multiple sets of starting values for consumption, aggregate investment, and a worker’s shadow value.
17The discrete approximation to (37) is relatively poor in the upper extremes and so we exclude

the highest 5% of the population distribution. We also exclude the lowest 5% of the population
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with a Zipf coefficient (the slope of the OLS regression line) that is five times smaller

than for technology. These plots of population and technology strongly resemble those

displayed for the 200 largest cities by ?.

The striking flattening of the population distribution arises because factors are

reallocated from low to high productivity cities, thereby making population smaller

than otherwise in low productivity cities and larger in high productivity cities. This

reallocation increases the cross-sectional variance of population relative to technology

but leaves rank unchanged. Agglomeration amplifies this effect; when we shut down

the density externality by setting λ = 1, the ratio of Zipf coefficients falls to 4. The

extent of the flattening is positively related to η; with goods more easily substitutable,

the incentive to reallocate resources rises. Note that with η = 0.927, our condition

for all cities being occupied, ηλϕ < 1, is easily satisfied at our point estimates. Thus,

the model is consistent with Zipf’s law.

6.3 Estimation with Model-Generated Data

Table 5 shows results from estimating (22) on simulated data with OLS and (23)

with GMM for two values of λ. We consider both a large sample (222 cities for 499

years) and a sample the size of our data set. For this exercise we use (25) to measure

TFP, assuming correct values for the parameters.18 Variables are only predictable

one period ahead in our model, so for GMM we use the first lag of the instruments,

which include log growth rates of wages, land rents, and output prices. Because of

the model’s large contemporaneous correlation between TFP and land rents, the OLS

estimates are severely upward biased and thus completely uninformative about the

value of λ. Our GMM implementation of instrumental variables estimation, on the

other hand, does a very good job of finding the correct value of λ, independent of

the sample size, although the standard errors with the small sample are relatively

large.19 Including additional sources of variation in land rents, as is the case in our

distribution because Zipf’s law does not apply to the lower tail.
18The Cobb-Douglas production function implies that estimating the parameters in (25) would

yield the values without any sampling uncertainty.
19We conjecture that our actual OLS estimates in Table 1 are close to our GMM and 2SLS

estimates because OLS allows for attenuation bias induced by measurement error, while our GMM
and 2SLS estimation corrects for this bias.
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data, would lower the standard errors.

7 Conclusion

Our work suggests many areas for future research, and we conclude by summarizing

a few. One area needing attention is a proof of equilibrium existence and uniqueness

for the general version of our model. Other limitations of our analysis include its as-

sumptions of convenience, which may affect our conclusions. While we have addressed

some of these issues in our empirical work, others remain. For example, the impact

of assuming perfect mobility of non-infrastructure capital remains to be determined.

Despite these shortcomings, it would be interesting to apply our methodology to

quantify the role of other mechanisms in growth. Another interesting avenue for fur-

ther study is additional predictions of the model for the cross-section of cities. Davis,

Fisher, and Veracierto (2013) have begun this work. Finally, our model can be use-

ful for understanding how the economy responds to aggregate shocks. For example,

the co-location of housing and production in our model endogenizes complementar-

ities that Fisher (2007) shows helps to reconcile theory with aggregate evidence on

investment.
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Figure 1: OLS and 2SLS with Panel Data
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Note: Data are from 22 cities over 29 years. Six TFP outliers are not in the plots to conserve on
white space. The regression lines are based on all the data.

Figure 2: Equilibrium Distribution of Population and Technology
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Table 1: Estimates of λ

Methodology Estimate Std. Error

GMM with estimated TFP & Land Price 1.069 0.030

OLS with TFP & Land Price as data
Panel Data 1.054 0.016
Mean of 22 Time Series 1.074 0.019
Mean of 29 Cross-Sections 1.088 0.032

2SLS with TFP & Land Price as data
Panel Data 1.099 0.029
Mean of 22 Time Series 1.084 0.036
Mean of 29 Cross-Sections 1.065 0.045

Note: GMM estimates and standard errors are from estimating equations (23) and (34)
with R = 1.05. Standard errors for GMM include the sampling uncertainty arising from
estimating the parameters in the TFP and land price measurement equations (26). OLS
and 2SLS estimates are from estimating (22) taking TFP and land prices as data.
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Table 2: Baseline Parameter Estimates

Parameter Description Estimate Std. Error

Λ Effect of agglomeration on growth 0.102 0.050

δ Net effect of density on productivity 1.041 0.018
ζ Infrastructure share in finished land 0.545 0.053
ϕ Non-land income share 0.974 0.002
α Capital’s share of non-land income 0.299 0.002
ω Structure’s share of housing 0.668 0.024
ξ Skilled-unskilled labor substitutability 0.545 0.035

γn Population growth 1.012 0.000
gpf Growth of infrastructure prices 1.006 0.002
gpb Growth of business capital prices 0.995 0.001
gps Growth of residential structures price 1.008 0.001
gpl Growth of finished land prices 1.010 0.003
gc Per capita consumption growth 1.017 0.001

κf Infrastructure depreciation rate 0.021 0.000
κb Business capital depreciation rate 0.107 0.001
κs Structures depreciation rate 0.016 0.000

Note: Estimates and standard errors are from estimating equations (18), (23), and (34).
Estimates are based on R = 1.05.
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Table 3: Specification Tests

Test Statistic p-value

AR(2) −1.022 0.307
AR(3) 0.264 0.792
J 9.535 0.090
H0 : gpl = g1−ζ

c γ1−ζ
n gζpf −1.135 0.128

H0 : gpf = gpl = gcγn 13.128 0.001

Note: The first two rows correspond to Arellano and
Bond (1991) tests of the null hypotheses of no second-
order and no third-order residual serial correlation in
equation (23). The third rows corresponds to the Hansen
(1982) and Sargan (1958) J-test of the over-identifying
restrictions in (23). The last rows correspond to Wald
tests of the indicated null hypotheses. The tests in rows
1, 2, and 4 are t-tests. The J-test in row 3 has five degrees
of freedom and the Wald test in row 5 has two degrees
of freedom.

Table 4: Effects of Model Assumptions on Baseline Parameter Estimates

Model Λ δ ζ ϕ α

Baseline 0.102 1.041 0.545 0.974 0.299
(0.050) (0.018) (0.053) (0.002) (0.002)

η = 1 0.128 1.057 0.545 0.974 0.299
(0.069) (0.020) (0.053) (0.002) (0.002)

gpf = gpl = gcγn 0.133 1.032 0.571 0.983 0.306
(0.052) (0.010) (0.016) (0.001) (0.002)

Notes: Standard errors are in parentheses. In both perturbations to the
baseline, estimation is based on the same set of instruments as in the baseline.

40



Table 5: Estimates of λ with Simulated Data

λ = 1.069 λ = 1
Estimate Std. Error Estimate Std. Error

OLS
Large Sample 1.366 0.000 1.368 0.000
Small Sample 1.370 0.004 1.373 0.004

GMM
Large Sample 1.0728 0.0030 1.0052 0.0041
Small Sample 1.0780 0.0382 1.0217 0.0512

Notes: The large samples include 222 cities for 499 years and the small sample is
the same size as our empirical sample, 22 cities for 29 years.
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