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Abstract

In models of optimal household behavior, the value of housing affects consumption,
savings and other variables. But homeowners do not know the value of their house
for certain until they sell, so while they live in their home they must rely on local
house price data to estimate its value. This paper uses data from the recent housing
boom and bust to demonstrate that changes in households’ self-assessed home values
are strongly consistent with the predictions of a model in which households optimally
filter available house price data. Specifically, we show that self-assessed house prices did
not increase as rapidly as house price indexes during the boom and did not decline as
severely during the bust. A Kalman Filter model nearly perfectly replicates these data.
These findings have direct implications for economists studying asking prices during
booms and busts, optimal default decisions and other key housing-related phenomena.
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1 Introduction

While housing accounts for much of the wealth in the United States, the exact market

value of any given house is only known at the time of a sale. As a result, homeowners are

unsure of the value of the largest and most important asset in their portfolio. There are

several well understood causes of this uncertainty. First, while homeowners and appraisers

can observe sales prices of nearby similar homes (“comps”), any differences in location and

other attributes imply that comps are imperfect benchmarks, at best.1 In addition, housing

markets are characterized by search and matching frictions so that even identical homes may

sell for different prices.2

Given households must guess at the current value of their home, a number of papers

have explored whether self-assessed home values are biased.3 These studies are of primary

importance to many Economists including those that study household saving and portfolio

decisions over the life cycle. In nearly all models in this broad literature, it is typically

assumed that households maintain an unbiased estimate of the current value of their home.4

The research to date suggests that this assumption is reasonable: Homeowners, on average,

tend to report accurate estimates.

Our paper also studies how households evaluate the current market value of their house

but focuses on how households update their estimates of market value when surrounding

house prices and area house price indexes are changing rapidly. To be specific, we study the

1According to their detailed analysis of pricing characteristics of 59 metropolitan areas, Malpezzi, Ozanne,
and Thibodeau (1980) find hedonic regressions of house prices on housing attributes typically yield R2 values
in the range of 0.50 to 0.75. Even with more localized data on sales prices, variation in house prices after
controlling for observed characteristics is still a prominent feature of the data. The web site Zillow, for
example, lists confidence intervals for its ability to predict the sales price of any home given the sales price of
nearby homes. These intervals can be large: See the table under the heading “Data Coverage and Zestimate
Accuracy,” at the web site http://www.zillow.com/zestimate/#what.

2In many models of search and matching, an ex-post distribution of sales prices arises for an ex-ante
identical set of homes. A classic example is Yavas (1992) who describes a an environment where sellers
and buyers with private valuations meet via random search and trading prices are determined via Nash-
bargaining. See Han and Strange (2015) for a recent review of the housing-search literature.

3For example, see Follain and Malpezzi (1981), Kiel and Zabel (1999), Bucks and Pence (2008), Kuzmenko
and Timmins (2011) and Genesove and Han (2013).

4More precisely, most models in finance and macroeconomics assume households know their current
(unbiased) house value with certainty: See Davis and Van Nieuwerburgh (2015). Recent notable exceptions
are by Ehrlich (2014) and Corradin, Fillat, and Vergara-Alert (2015).
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behavior of self-assessed home prices during the recent housing boom and bust. Our key

finding is that homeowners do not immediately adjust self-assessed house prices by the full

change in local house price indexes. Rather, they gradually update their assessments, such

that self-assessments nearly fully reflect changes in house price indexes only after some time

has passed. This is true for both the boom and the bust.

We show that a simple optimal learning framework can account for almost all of the

disconnect between the change in self-assessed house prices and the change in local house

price indexes. Given that house prices are subject to random shocks and that homeowners

only observe the set of comparable house prices (i.e. a “noisy” signal of the current value of

their homes), it can be shown that homeowners should optimally apply a Kalman Filter to

update their guess of the market value of their home. The formula for this optimal update is

a weighted average of two pieces: (i) their previous self-assessed house price and (ii) the noisy

signal on current house prices, i.e. the sale prices of nearby relevant homes. The Kalman

Filter model has the desirable property that in the long-run self-assessed house prices are

unbiased on average, consistent with prior findings, but it also easily explains the sluggish

and lagging response of self-assessments to large changes in local price indexes.

We use a maximum likelihood procedure to estimate the parameters of our Kalman-Filter

model after merging publicly available data on average self-assessed house prices from the

Census and American Community Surveys and house price indexes from Case-Shiller-Weiss

(CSW) for 20 metropolitan areas. Using only year-2000 self-assessment data, we use our

model to generate rolling out-of-sample predictions of the annual average of self-assessed

house prices in these 20 metro areas from 2006-2011. A regression of actual on predicted

self-assessed house prices produces an R2 value of 0.97. These findings strongly suggest

that during periods of rapidly changing house prices households optimally filter the available

data.

Our research has fundamental implications for the way one might interpret several es-

tablished findings in the housing literature. First, it is well documented that appraisals tend

to be backwards looking and smoother than transactions prices,5 the so-called “appraisal

5See Geltner (1991) and references therein.
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bias.” If appraisers optimally apply a Kalman Filter to noisy sales data to estimate the level

of house prices, appraisals will display precisely those characteristics. Second, our Kalman

Filter model could explain the observed variation in the asking price of near-identical hous-

ing units, as documented in Genesove and Mayer (2001). Since optimal filtering implies

people are slow to take on changes in house price indexes, recent purchasers are more likely

to set asking prices closer to their own purchase price than homeowners with longer tenure.

Third, our results might explain why listing behavior and time-on-market change during a

boom-bust cycle. Our model predicts self-assessed house prices will be relatively low during

a boom and high during a bust. To the extent that asking prices reflect self-assessments, the

duration of time on market should therefore be shorter and the frequency of multiple-bid

sales should be greater during a boom as compared to a bust, consistent with the available

data.

Finally and perhaps most importantly, the gap between self-assessed values and public

estimates of home prices might help explain the fact that most households with negative

home equity choose not to default on their mortgages (Gerardi, Shapiro, and Willen, 2009).

As the default literature has discussed at length, households with negative equity often

choose to continue making mortgage payments; the presumption is that households make

these payments because default triggers tangible and intangible costs and because home

prices could improve in the future. Our results suggest a complementary explanation. In

empirical default models, researchers estimate current home value by applying the change in

a house price index to the purchase price of each home. As we document, during a housing

bust self-assessed house prices do not decline by as much as house price indexes. Households

will self-assess greater home equity (or less negative equity) than traditional estimates.

In the next section, we report some basic facts about self-reported house prices and house

price indexes during the housing boom and bust. In the third section we derive the Kalman

Filter model and likelihood we use to estimate model parameters. In the fourth and fifth

sections we analyze model fit and derive some other implications of our model. We then

conclude.
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2 Overview of the Data

In this section we introduce and compare our data main sources of data. Throughout

the paper we only work with inflation-adjusted data. For 20 Metropolitan Statistical Areas

(MSAs) over the 2000-2011 period, we compare real changes to the Case-Shiller-Weiss (CSW)

house price index to real changes to self-reported house prices that we compile from survey

data from the Decennial Census of Housing and the American Community Survey. Relative

to other data sources with housing information such as the American Housing Survey and

the Survey of Consumer Finances, the sample sizes for the Census and American Community

Survey data are extremely large as shown in table 1. The bottom row of the table reports

the percentage of the sample where self-reported house value is top-coded after accounting

for sampling weights. This percentage is small enough that we do not adjust for top-coding

in our data work. In the appendix, we document details of the data construction. The most

important takeaways are that we do not use any imputed data on house prices from the

Census and American Community Survey; and, the CSW indexes and the self-reports cover

roughly the same geography and set of homes in each of the MSAs we study.

To give a sense of patterns in the raw data, Table 2 reports the real ($2005) average

self-reported value of housing by year and metropolitan area. The table shows there is

meaningful variation in the average of the self-reports across MSAs and over time. The

median of the MSA-average values increases from $209 to $345 thousand during the housing

boom and then falls to $246 thousand by 2011. In 14 of the 20 MSAs, the average of the

self-reported values peaks at the same time or one year after the CSW index peaks.6

Over our sample period the CSW indexes and the self-reported data do not move in

lock-step, the focus of this paper. Figure 1 compares the CSW index (solid line, “CSW”)

to the average of the self reports (dashed line, “SR”) for the Los Angeles MSA; the other

metro areas in our sample have similar patterns, as we show later. The SR line is linearly

interpolated for the years 2001-2004, as no self report data exist in that period, and the

average of the self-reports and the CSW indexes are each normalized to 100 in the year in

6In the case of Dallas, we adjust the real peak date of the CSW from 2002, a year lacking self-report
data, to 2006. This reduces the peak value of the CSW by 1.3 percent.
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which the CSW peaks, 2006 in the case of Los Angeles. Figure 1 shows that before the peak,

the self-reports do not increase by as much as the CSW price index;7 and, after the peak

the CSW declines more sharply than the self-reports. In many MSAs, the difference in the

percentage decline of the CSW index and the self reports during the housing bust is quite

large. Table 3 reports the percentage decline in the average self-report data and the CSW

indexes, measured from the MSA-specific peak date of the CSW to 2011. At the median

MSA, the CSW declines by 14 percentage points more than the self-reports. In the extreme

case of the Los Angeles MSA, the CSW index declines by 44 percent whereas the self-reports

only decline by 18 percent.

The magnitude of the difference between the CSW and self-reported values is strongly

correlated with the change in the CSW index. This is true for both the boom and bust

periods. The top panel of figure 2 shows results from the boom period. The figure shows 20

dots, one for each MSA. For each MSA, cumulative real growth in the CSW index during

the boom, the x-axis, is plotted against cumulative real growth in the self-reports. Figure

2 shows that growth in the CSW and self-reports are highly correlated but growth in self-

reports does not reflect growth in the CSW index on a percentage point-for-percentage point

basis. When cumulative growth in the self-reported data over this period is regressed on

cumulative growth in the CSW index, the R2 of the regression is 0.95 but the coefficient is

0.74 with a standard error of 0.04 and the intercept is 15.9 with a standard error of 3.0. If

the self reports tracked the CSW, we would expect an intercept of 0 and a coefficient of 1.

The bottom panel of figure 2 is constructed in an identical fashion as the top panel,

except it shows results from the bust period, the CSW peak date through 2011. As with the

boom period, cumulative growth of the two series are highly correlated, but they do not move

percentage point-for-percentage point. A regression of cumulative growth in the self-reported

data over this period on cumulative growth in the CSW index yields a coefficient of 0.86

with a standard error of 0.09; an intercept of 9.4 with a standard error of 3.5; and a R2 value

of 0.85. In this case, we cannot reject the hypothesis that the coefficient is 1.0. However,

during the bust period the regression estimates are sensitive to the ending year of the sample.

7Additionally, in Los Angeles the self-reports continue to rise slightly until 2008.
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When the sample is specified to end in 2009, the same regression yields a coefficient of 0.58

with a standard error of 0.08 and an R2 of 0.74; and with an end date of 2010, the coefficient

is 0.74 with a standard error of 0.08 and an R2 of 0.82. The increase in the coefficient from

0.58 with a sample end date of 2009 to 0.86 with an end date of 2011 – a result that shows

that over time, the self-reports gradually adjust to the CSW index – supports our Kalman

Filter model that we describe in the next section. The basic intuition from the model is

that when information about house prices is imperfect, homeowners slowly revise down their

self-assessed home value with each passing year the CSW remains depressed.

In summary, during both the housing boom and bust, the averaged self-report data do

not increase or decrease percent-for-percent with changes to the CSW indexes although the

two series are highly correlated. We next show that these results are consistent with an

environment in which homeowners receive noisy signals (such as the CSW) about the value

of their home and optimally filter these signals when determining their home’s current value.

3 A Kalman Filter Model

3.1 Specification

We start by specifying a process for true but unobserved log real house prices during

the housing boom and bust. Denote the true but unobserved log real price in period t of

the home owned by homeowner i as h∗
it. We assume that this true house price follows a

first-order autoregressive process with autoregressive parameter ρ and shock eit.

h∗
it = h̄i + ρh∗

it−1 + eit . (1)

In the event ρ < 1, the fixed mean of this process for homeowner i is h̄i/ (1− ρ). If ρ = 1,

this process is a random walk and the true level of house prices has no fixed mean.

Homeowner i does not directly observe h∗
it; after all, as we noted in the introduction, the

price of a home is only directly observed at the time of a sale. Instead, homeowner i observes
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a noisy but unbiased signal of the true log price. Denote this signal as hsit such that

hsit = h∗
it + νit . (2)

To make progress, we assume the shock to growth rate of prices, eit, and the measurement

error on the signal of the level of prices, vit, are independently drawn from each other and

over time. Further, we assume eit and vit are Normally distributed with mean 0 and variances

σ2
e and σ2

ν , respectively. Although eit and νit are independent of each other, we allow eit and

ejt to be correlated and νit and νjt to be correlated for any two homeowners i and j in the

same metro area at the same time.

Now denote homeowner i’s self-assessed value of the house as of date t− 1, her “belief”

about house value, as hbit−1. Given the assumptions we have made, homeowner i should

optimally update her belief in period t using a Kalman Filter that has the form,

hbit = (1− κit)
[

h̄i + ρhbit−1

]

+ κithsit . (3)

Notice homeowners should be sluggish to adjust to new signals. Households optimally update

their belief about the current price of their home as κit times the current signal of market

prices plus (1− κit) times last period’s belief of the house price after appropriately adjusting

for any expected autocorrelation in house prices.

κit is known as the “Kalman gain,” which is a number between 0 and 1. In the event

the signal is very informative, and κit is close to 1, then households’ beliefs track the signal

closely. If the signal is noisy, then κit will be significantly less than 1. The Kalman gain is

updated each period using the following recursion (Hamilton, 1994)

V
p
it = ρ2Vit + σ2

e

κit =
V

p
it

V
p
it + σ2

ν

(4)

Vit+1 = (1.0− κit)V
p
it
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Note that we would expect κit = 0 in the year that a house is purchased.8 Starting off from

this point, for any 0 < ρ ≤ 1, κit converges monotonically over time to a fixed value. The

rate of convergence depends on the variances σ2
e and σ2

ν .

3.2 Likelihood

To bring this model to the data we have on hand, we assume that κit has converged to

its steady-state value κ for each homeowner in our sample. We discuss the plausibility of

this assumption later.9 Given this, we rewrite equation (3) as

hbit = (1− κ)
[

h̄i + ρhbit−1

]

+ κhsit. (5)

Since (5) holds for any homeowner i, it holds for the average of all homeowners i = 1, . . . , N .

Denote the cross-sectional average of a variable in a given metro area at time t using a

capital letter and a subscript m, for example Hbmt =

(

N
∑

i=1

hbit

)

for all the i = 1, . . . , N

homeowners in metro area m. After taking averages and substituting notation, equation (5)

can be written as an expression in MSA-level cross-sectional averages

Hbmt = (1− κ)
[

H̄m + ρHbmt−1

]

+ κHsmt (6)

To reiterate, the assumption that the kalman gain has converged for everyone in our sample

to a common number κ enables us to jump from equation (3), a statement about individual

behavior and beliefs, to equation (6), a statement about cross-sectional averages inside a

metropolitan area.

There are only two variables in equation (6), the average of the beliefs of the log sale

price of each individual’s home in a metro area, Hbmt, and the average of the signal of log

house prices in that metro area, Hsmt. Assuming people’s self-reported house prices are

8Referring to the recursion equation, this occurs because the variance around self-assessed beliefs, Vit, is
equal to 0 in the year of the sale as the sale price is exactly known at that moment.

9To preface our results, when we eliminate households from our data for whom it is least likely that κit

has converged to its steady state value, our parameter estimates do not change.
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the same as their beliefs about the sale price of their house, we observe Hbmt from the

Census and American Community Survey.10 Even if at the individual level the self-reports

measure beliefs with classical measurement error, the sample sizes (reported in table 1) used

to compute averages are so large that for each metro area in any given year, the unit of

analysis, the measurement error for the average will be essentially zero.11

We do not, however, observe any individual house price signals that we can aggregate to

the metro level. Instead, we observe the log of the CSW house price index. So, we assume

the log CSW, denoted Hmt, is an unbiased estimate of the average signal Hsmt up to an

metro-specific additive scale factor αm and Normally distributed error umt

Hmt = Hsmt − αm + umt . (7)

The scale factor is required to rescale the CSW price index to a level. Now insert (7) into

(6) to get

Hbmt = am + (1− κ) ρHbmt−1 + κHmt − κumt (8)

where am = (1− κ) H̄m − καm . (9)

Notice that it looks like we can run a simple fixed-effects regression using equation (8) to

uncover estimates of κ and ρ, assumed the same for every metro area, and αm (one for

each metro area).12 However, that is not the case as the error term in equation (8), umt, is

correlated with the regressor Hmt via equation (7).

10Hbmt is the average of the log of self-reported house prices. To be clear, this is not equal to the log of
the average self-reported house prices that are shown in table 2.

11To give an example, suppose the standard deviation of reporting error at the household level in logs is
0.05, i.e. 5 percent. With a sample size of 5,000, the standard deviation of the average of the reporting error
will be 0.071 percent.

12In the case of κ, this is equivalent to saying that σ2

e
and σ2

ν
are identical for all metro areas during the

housing boom and bust. Obviously some metro areas had larger booms and busts than others, but it is not
clear if it is preferable to specify different variances of shocks, i.e. different values of σ2

e , or simply different
realizations of shocks from the same underlying distribution. We chose the latter assumption: Many of the
areas with the greatest boom and bust, like Las Vegas, had what appeared to be plenty of easily developable
land and thus should not be subject to big swings in house prices (Davidoff, 2013).
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To make progress, we simply rearrange (8) as

Hmt = −am +

(

1

κ

)

Hbmt −

(

1− κ

κ

)

ρHbmt−1 + umt (10)

We estimate (10) over the 2006-2011 period (120 observations) using non-linear least squares

with fixed effects. The R2 of the regression is 0.96 and the standard deviation of the error

term is 0.0482. Coefficient estimates and standard errors are reported in the top two rows

of table 4. We estimate ρ = 1.04 with a standard error of 0.038, implying we cannot reject

house prices are a random walk, and we rather precisely estimate the kalman gain to be 0.53

with a standard error of 0.016.

One criticism observes that no information from the housing boom is used to inform

estimates because the first year in the estimation sample is 2006. We therefore re-estimate

model parameters using a simulated maximum likelihood procedure that takes advantage of

all available data. Rewrite equation (8) as

umt = Hmt − κ−1 [Hbmt − am − (1− κ) ρHbmt−1] (11)

Denote θ as the full vector of parameters and ℓ (θ)mt as the log likelihood of the data for

metro area m at year t. This log likelihood is the log of the density of umt from equation

(11). Our estimate of θ maximizes

L (θ) =
1

N

N
∑

n=1

[

20
∑

m=1

ℓ̃ (θ)mt=2005

]

+
20
∑

m=1

2011
∑

t=2006

ℓ (θ)mt (12)

where N is the total number of simulation draws and ℓ̃ denotes a simulated log likelihood.

The first term on the right-hand side of equation (12) shows we simulate the log likelihood

for the year 2005. The values of umt for 2006−2011 are directly observable with data on hand

from equation (11) and do not depend at all on the simulations, explaning the rightmost

term of equation (12).

We use simluations because there is a gap in obseved values of Hbmt: We first observe

Hbmt in 2000 and then annually from 2005 − 2011. Our simulation procedure fills in this
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gap. We draw umt from its distribution for each of t = 2001 − 2004. Given this draw, and

given a value of Hbmt for the year 2000 and values for the CSW (Hmt) for 2001 − 2004,

we sequentially apply equation (8) to generate simulated values of Hbmt. With a simulated

value of Hbmt in hand for the year 2004, we use equation (11) to determine umt for 2005 and

compute the log likelilhood at this draw, ℓ̃mt=2005. We repeat this process N = 25, 000 times

and compute the average value of the simulated likelihoods.

We report our maximum likelihood parameter estimates and standard errors in rows 3-5 of

table 4.13 The estimates are quite similar to those we found with nonlinear least squares. We

find ρ = 0.992 implying house prices are essentially a unit-root process; κ = 0.554, meaning

people only incorporate a little more than half of a new reading of a house price signal when

updating their assessment of their home value each year; and σu = 0.0453 implying the

standard deviation of the measurement error associated with the level of the CSW index is

about 4.5%. For the rest of our analysis, we use this set of parameter estimates.

4 Model Fit

To get a sense for model fit, in figure 3 we plot the CSW data Hmt against the model-

implied signal Hsmt for the years in which the signal is computable without simulation,

2006−2011. In other words, given our parameter estimates, we back out values of the signal

Hsmt such that equation (6) exactly holds and compare this signal to the observed CSW. To

ensure all series in the figure are appropriately scaled with a zero mean, we add an estimate of

αm to the CSW series and subtract an estimate of H̄/ (1− ρ) from both series.14 The graphs

show that the gaps between the model-implied signal and the CSW indexes are relatively

small given the large decline over time in the CSW indexes. A regression of the de-meaned

CSW indexes on the de-meaned values of Hsmt for all the MSAs and years shown in figure

3 yields an R2 value of 0.95 with an intercept of nearly exactly 0 and a slope coefficient of

13The reported standard errors are computed as the square root of the diagonals of the inverse of the outer
product of scores. For reference, the maximized log likelihood is 232.047.

14We set H̄/ (1− ρ) as the average value of Hbmt over the 2005-2011 period, and given our maximum
likelihood estimates of am we set αm such that equation (9) holds.
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exactly 1.0.

Figure 3 has the flavor of plotting one-step ahead prediction errors. Another way we

informally evaluate model fit is by computing a full out-of-sample forecast. We ask how

well the model could have predicted the sequence of average self-reports from 2005-2011

given (a) data on self-reports for only the year 2000 and (b) assuming the Case-Shiller-Weiss

values for 2001-2011 were exactly equal to household signals. Given our estimates of am, a

sequence of Hmt, and a starting value for Hbmt−1 (the year-2000 value, but no other values),

we generate a model-predicted sequence of values for Hbmt for the years 2001-2011. To be

crystal clear, data on Hbmt−1 from only the year 2000 is used to generate predicted values.

No other data on self-reports are used in this exercise. Given that ρ is essentially 1, the

possibility for error late in the sample is large as there is nothing inherent in this exercise

that pulls out-of-sample predictions of Hbmt towards the data.

Figure 4 shows a scatter diagram of the the self-reported home value data (y-axis) against

the predicted self-reported values (x-axis) for all 20 metro areas over the years 2005-2011.

We subtract our estimates of H̄m/ (1− ρ) from all data such that goodness of fit abstracts

from across-MSA differences in the average level of self-reported values. The R2 of the

pictured regression line of the self-report data on predicted values is 0.97 and the intercept

of the regression is nearly exactly zero. The point estimate of the slope coefficient is 0.96

with a standard error of 0.014, implying that the actual self-reports vary a bit less than the

out-of-sample predictions.

5 Other Implications

As a final part of our analysis, we estimate the variance parameters σ2
ν and σ2

e . Additional

assumptions on the nature of the correlation of shocks across households in an MSA are

required to estimate these parameters. To make progress, we assume that homeowners in

each metro area experience identical values of e and ν – that is, eimt = ejmt and νimt = νjmt

for all homeowners i and j in metro area m in period t – but allow values of e and ν to vary
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across metro areas. The assumption that all agents in a given MSA receive the same sized

shocks is not innocuous and results derived in this section should be viewed appropriately.15

On the other hand, a representative agent in each MSA is often assumed in models of Urban

Economics.

With the assumption of a representation agent in each metro area, it can be shown that

var
[

Hsmt − ρHsmt−1 − H̄m

]

= σ2

e +
(

1 + ρ2
)

σ2

ν . (13)

Additionally, it is possible to show that once the Kalman gain converges to its steady-state

value it satisfies

[

σ2

νρ
2
]

κ2 +
[

σ2

e + σ2

ν

(

1− ρ2
)]

κ− σ2

e = 0 . (14)

Although equation (14) is quadratic in κ, it is linear in σ2
ν and σ2

e .

Given estimates of ρ, κ, and var
(

Hsmt − ρHsmt−1 − H̄m

)

, equations (13) and (14) uniquely

determine σ2
ν and σ2

e , with the closed-form expression for σ2
ν as

σ2

ν =
var

[

Hsmt − ρHsmt−1 − H̄m

]

(1− κ)

1 + ρ2 (1− κ)2
(15)

and the expression for σ2
e naturally following from (13) and (14).

We estimate var
[

Hsmt − ρHsmt−1 − H̄m

]

using data across all metro areas and years

(2007-2011)16 to be 0.008. At our estimated values for ρ and κ, and given the computed values

of Hsmt and H̄ in each period and metro area, we compute σν = 0.0556 and σe = 0.0464.

The interpretation of these findings is that the standard deviation of shocks to home prices

is 4.64 percent per year; and homeowners understand the standard deviation of the gap

between the signal they receive on the value of their home and the true value of their home

is 5.56 percent. Referencing notation in equation (4), these estimates imply a steady-state

value of the square root of Vit, the standard deviation of homeowners’ uncertainty about the

15In fact, one of us has written a paper documenting that the magnitude of house price declines during
the housing bust varied quite a bit within some metro areas (Davis, Oliner, Pinto, and Bokka, 2016).

16The first year we can estimate umt and thus Hsmt is 2006.
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the value of their home, of 4.14 percent. In other words, once we assume a representative

agent inside each metro area we estimate a two standard error confidence interval around

homeowners’ current guess of house prices of ±8.28 percent.

Given estimates of σ2
ν and σ2

e , we can compute the sequence of optimal Kalman gains for

a homeowner starting the year she knows her true log house price with certainty.17 In year

1, the Kalman gain is 0.410; year 2 it is 0.524; year 3 it is 0.548; in year 4 it is 0.552 percent;

and so forth. With these estimates on hand, we now reconsider the impact of the assumption

on our analysis that κit has converged to its steady state value for all homeowners in our

sample. In the Census and American Community Survey data, between 8% (2011) and 14%

(2005) of the sample has lived in their current house 2 years or less. When we exclude these

households from our estimation sample, our maximum likelihood estimates of ρ and κ are

essentially unchanged.

6 Conclusion

Given no two houses are exactly alike, it seems reasonable to assume that homeowners

cannot learn the exact price at which their house will sell based on nearby sales of similar

homes. Rather, homeowners should use available information to guess the current market

price of their home. We show that when house prices are subject to random shocks and

when the information people use to learn about house prices is unbiased but noisy, households

optimally update the guess of the sale price of their home using a Kalman Filter. We estimate

the parameters of a Kalman Filter model for house prices using data for 20 metropolitan areas

during the housing boom and bust and show that house prices are essentially a random walk

and the steady state Kalman gain is slightly above 0.5. Our analysis of these data strongly

suggest to us that the Kalman Filter model is appropriate, in the sense that the model

accurately replicates the data as shown in figures 3 and 4. Our expectation is that future

researchers will use our results to better understand the nature of appraisal bias, asking

prices during boom-bust cycles and optimal default decisions.

17For convenience, think of this as the year that she bought her home.
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Data Appendix

The CSW house price indexes are derived from repeated sales of single-family housing units,

which in principle delivers a constant-quality price index. We average the monthly nominal

CSW index values in each year and convert the nominal annual index to real by deflat-

ing using the personal consumption price index from National Income and Product Ac-

counts (NIPA), line 2 of NIPA table 1.1.4. The CSW discards transactions that occur

with 6 months; regression weights used to compute the index are reduced the longer the

time between sales; and, price anomalies are down-weighted. For further discussion, see

http://www.macromarkets.com/csi housing/documents/tech discussion.pdf.

The data on self-assessed home values are from the 5% sample of the 2000 Census and the

annual 2005 through 2011 American Community Surveys (ACS).18 2005 is the first year that

the ACS includes metropolitan-area data. The geographic boundaries defining metropolitan

areas in the 2000 Census and the 2005-2011 ACS are consistent with the 2000 definition and

18These data are available from the IPUMS web site, see http://usa.ipums.org/usa/. See Ruggles et. al.
(2010).
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are consistent with the MSA boundaries in the CSW data.19 From the Census and ACS

data, we include only nonfarm, single-family detached or attached, owner-occupied housing

units. The large majority of these units are detached. We keep any housing unit where the

reported house value is specified in a flag variable as “unaltered.”20 The Census and the ACS

continually sample throughout the survey year. As mentioned earlier, the total number of

housing units in the Census and ACS sample that meet the criteria listed above are reported

in Table 1.

The Census and ACS data include information on whether or not the units are detached

or attached; the age of the units; and, the number of bedrooms in each unit. We assign every

unit in the sample to a bin based on these observable characteristics.21 Attached housing

units account for a small percentage of the overall sample and we bin them together by

MSA. For the detached units, the bins are based on bedrooms (1 or 2, 3, or 4 or more) and

age of structure: Built before 1940; decade-by-decade from 1940-1949 through 1990-1999;

2000-2004; and 2005-2011. We compute sampling weights for each bin prior to discarding

any missing or imputed observations on house prices. The sum of the sampling weights

across bins is 1.0 in each metro area in every year.

We calculate the average value of housing as the sampling weight for each bin multiplied

by the average of the non-missing house values in that bin. We then adjust for inflation

using the NIPA price index described earlier. We compute the average value of the log of

real house prices using an analogous procedure.

19With the exception of New York and Chicago, the CSW indexes cover the full set of counties in each of
the 20 metro areas. The Chicago index does not cover properties sold in the Kenosha, WI and the Gary, IN
metropolitan divisions. The CSW index for New York samples all 23 counties included as part of the New
York Metropolitan Statistical Area and 6 others: Fairfield and New Haven counties in Connecticut, Mercer
and Warren counties in New Jersey, and Dutchess and Orange counties in New York. In 200, the excluded
divisions in Chicago account for 16 percent of the MSA population and the additional 6 counties in the New
York metro area increase the population by 15 percent.

20Of all metro areas in all years, there are 150 total instances where $0 is reported as the house value.
These are treated as missing. In addition, we discard from the sample in the 2005 ACS any house reported
as built in 2005. Finally, the top code for self-reported house value is $1,000,000 in 2000 and 2005-2007 and
varies by state after 2008.

21Bins are chosen such that each bin in every metro area in every year contains at least one house price
observation.
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Table 1: Sample Sizes for Self-Reported House Values, 1-Family Owner-Occupied Units

2000 5% Census, 2005-2011 American Community Survey

5% Census American Community Survey
MSA 2000 2005 2006 2007 2008 2009 2010 2011
Atlanta 34,865 10,986 11,180 11,462 11,130 11,398 10,579 8,637
Boston 30,588 7,952 7,875 7,873 7,546 7,706 7,596 7,572
Charlotte 13,125 4,147 4,268 4,501 4,479 4,486 4,357 3,870
Chicago 66,584 16,969 16,875 17,108 16,406 16,665 15,843 14,636
Cleveland 24,888 6,021 6,051 6,028 5,774 5,825 5,778 5,910
Dallas 42,525 12,850 12,908 13,306 13,258 13,315 12,975 12,158
Denver 20,847 5,958 5,957 6,060 5,851 5,856 5,813 5,688
Detroit 39,689 9,937 9,817 9,742 9,093 9,176 8,707 8,742
Las Vegas 11,319 3,767 3,880 3,951 3,853 3,832 3,680 3,417
Los Angeles 82,064 20,354 20,040 20,218 18,989 19,247 19,095 20,048
Miami 14,148 3,475 3,590 3,637 3,409 3,379 3,409 3,410
Minneapolis 24,213 5,883 5,943 5,895 5,806 5,730 5,489 5,161
New York 100,842 24,307 23,735 23,826 23,184 23,231 23,013 23,371
Phoenix 29,324 8,987 8,958 8,958 8,551 8,503 8,093 7,761
Portland 16,173 4,407 4,460 4,546 4,427 4,412 4,379 4,360
San Diego 20,526 5,603 5,529 5,387 5,159 5,194 5,065 5,143
San Francisco 38,864 9,583 9,411 9,371 8,780 9,052 8,870 8,774
Seattle 20,524 5,498 5,462 5,661 5,510 5,569 5,599 5,567
Tampa 24,491 7,219 7,189 7,283 6,860 6,828 6,735 7,066
Washington, DC 46,335 12,175 12,131 12,369 11,894 12,052 11,985 11,505
top-code percent 1.2 4.3 5.3 5.6 0.6 0.6 1.0 1.0
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Table 2: Average of Real Self Reported (SR) House Values

2000 5% Census, 2005-2011 American Community Survey

Thousands of $2005 Dollars Peak Date
MSA 2000 2005 2006 2007 2008 2009 2010 2011 SR CSW SR-CSW

Atlanta 193 238 245 249 248 230 207 189 2007 2006 1
Boston 310 480 475 464 455 432 423 401 2005 2005 0
Charlotte 175 205 211 217 232 219 211 204 2008 2007 1
Chicago 224 301 314 315 312 289 270 250 2007 2006 1
Cleveland 162 183 181 180 174 160 158 147 2005 2005 0
Dallas 152 178 183 187 190 188 184 178 2008 2002 6
Denver 242 308 306 304 309 299 283 277 2008 2006 2
Detroit 183 217 213 206 190 159 142 132 2005 2005 0
Las Vegas 184 355 374 369 317 236 198 176 2006 2006 0
Los Angeles 328 585 626 618 637 560 539 513 2008 2006 2
Miami 184 338 378 381 377 306 272 241 2007 2006 1
Minneapolis 189 299 297 297 285 263 242 226 2005 2006 -1
New York 296 486 508 502 510 483 457 437 2008 2006 2
Phoenix 184 292 349 341 321 261 233 200 2006 2006 0
Portland 232 293 330 348 341 316 288 274 2007 2007 0
San Diego 314 610 615 590 572 500 472 454 2006 2005 1
San Francisco 434 663 682 663 716 618 593 556 2008 2006 2
Seattle 305 398 438 466 474 438 410 373 2008 2007 1
Tampa 137 233 275 265 251 210 196 173 2006 2006 0
Washington, DC 258 471 507 500 480 439 418 399 2006 2006 0

Median 209 305 340 345 319 294 271 246 2007 2006 1
Standard Dev 76 147 151 146 154 137 134 130 1 1 1
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Table 3: Real Percent change in CSW and Self Reports (SR), CSW peak date to 2011

Percent Chg.
MSA SR CSW Difference
Atlanta -22.7 -29.7 7.0
Boston -16.5 -25.1 8.6
Charlotte -6.1 -22.9 16.8
Chicago -20.4 -37.5 17.1
Cleveland -19.5 -27.7 8.3
Dallas -2.6 -15.9 13.4
Denver -9.7 -18.5 8.8
Detroit -39.2 -51.4 12.2
Las Vegas -52.8 -63.1 10.2
Los Angeles -18.0 -43.9 25.9
Miami -36.3 -54.7 18.5
Minneapolis -23.8 -40.7 16.8
New York -14.1 -30.3 16.2
Phoenix -42.7 -60.0 17.4
Portland -21.4 -32.9 11.5
San Diego -25.6 -44.5 18.9
San Francisco -18.5 -44.2 25.7
Seattle -20.0 -33.6 13.6
Tampa -37.0 -51.2 14.1
Washington, DC -21.3 -34.0 12.7
Median 13.9

20



Table 4: Estimates of Parameters

Nonlinear Least Squares Estimates
Parameter Estimate Standard Error

(1) ρ 1.0473 0.0382
(2) κ 0.5281 0.0164

Maximum Likelihood Estimates
Parameter Estimate Standard Error

(3) ρ 0.9924 0.0353
(4) κ 0.5537 0.0122
(5) σu 0.0454 0.0030
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Figure 1: Comparison of CSW to Average of Self Reports (SR)
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Figure 2: Comparison of Real Growth, CSW and Average of Self Reports (SR)
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Figure 3: Comparison of Hst (square) and estimate of Hsmt (triangle)
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Comparison of Hst (square) and estimate of Hsmt (triangle)
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Figure 4: Comparison of data on Hbt to predicted values, 2005-2011
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