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Abstract

We study the planning problem of a standard location-choice model to discuss why a planner

might optimally redistribute output across locations. In this model, ex-ante identical house-

holds value consumption and housing and choose a location in which to live, where locations

vary in productivity, amenities, and the quantity of housing. Two features of this model lead

the planner to redistribute output. First, the supply of housing is fixed in each location and

subject to a congestion externality. Second, households randomly and unobservably vary

in their “attachment” to any given location, affecting both household location choice and

utility. We demonstrate that researcher choice in modeling attachment critically affects the

size and direction of optimal transfers of output across locations. This is a key problem as

the location-choice data do not discipline this facet of the model: A plethora of frameworks

may be observationally equivalent, but predicted optimal transfers can vary greatly across

approaches. We propose a simple adjustment to the planning problem that removes the

influence of the attachment-modeling choice on predicted optimal policy but preserves the

planner’s incentives to redistribute across locations in response to housing congestion and/or

other externalities.
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1. Introduction

For decades, federal, state and local governments have directly or indirectly redistributed

income across locations. This redistribution can take many forms: It can be a subsidy for

development of new low-income housing (Davis et al., 2019); a subsidy to local businesses

operating in low-income areas such as Empowerment Zones (Busso et al., 2013); a large-

scale government works projects (Kline and Moretti, 2014); or other forms. Thus, a central

area of investigation in Economics is to understand the context in which redistribution

across locations improves welfare. Recent papers by Fajgelbaum and Gaubert (2019), Rossi-

Hansberg et al. (2020) and Gaubert et al. (2020) extend this tradition by studying optimal

transfers of income across households and locations using modern, sophisticated equilibrium

location-choice models. The models of these authors include well-documented externalities

in production and two types of households, low- and high-skill. The goal of the authors is to

quantify, using the filter of the calibrated model, transfers across people and locations that

improve expected utility for reasons of both efficiency and equity.

In this paper, we take a step back and study optimal place-based redistribution in a simple

location-choice model that in many ways is a canonical model of Urban Economics. To be

clear, when we say “place-based redistribution,” we are referencing an environment in which

a planner optimally transfers output across locations, such that consumption of households

in a given location is not equal to output produced in that location. We want to understand

the basic properties and mechanisms underlying optimal place-based redistribution arising

from a simple model that is familiar to many Economists, before adding complexity and

more realism. Perhaps our most surprising result is that optimal place-based redistribution

is a robust feature of simple location-choice models – models that do not include production

externalities, such as agglomeration, or any desire to redistribute across different types of

people (i.e. high- and low-skill workers) that sort into different locations. Consequently,

we believe discussion of optimal redistribution in more realistic and complicated location-

choice environments should start with the redistribution we discuss in our simple model as

a “baseline.” Any additional redistribution arising from a more complicated model can then

be understood as a consequence of the additional complexity.

In the model we study, ex-ante homogeneous households choose where to live, with the
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natural restriction that they must live and work in the same location. In each location,

households receive utility from consumption and housing subject to a draw of a location-

specific attachment variable that varies across locations and households. We show that in

this model, a planner will want to transfer income across locations for two reasons. First,

housing is each location is in fixed supply, and households must live and work in the same

location. Second, the location-specific attachment draws are not insured. These draws not

only determine optimal location choice, but also the level utility and the marginal utility

of consumption. To increase average (expected) utility, the planner will redistribute income

across locations given how households sort themselves into locations, the level of utility, and

the marginal utility of consumption, all of which are partially based on the draws.

We are troubled by this last result, because we argue researchers have essentially no guid-

ance from the data as to how to model these draws, and this key modeling choice influences

predicted optimal transfers. Restated, researchers can model these draws in multiple ways

such that the full set of testable predictions of the location-choice model are indistinguish-

able. To illustrate this point, we compare the planning solution of the simple location-choice

model with only two locations, but when the location-specific draws are from (a) the Fréchet

distribution and then (b) a closely related distribution, the Weibull. We pick the parameters

of both distributions to match the model’s predicted elasticity of relative population with re-

spect to relative wages, a commonly chosen calibration target. The Fréchet and the Weibull

generate the exact same distribution of location choices: There is nothing to tell them apart.

But the choice of the researcher as to which of these two distributions to use determines the

solution to the planner’s problem and the size and direction of optimal place-based distribu-

tion. With the Fréchet distribution, a planner will always want to transfer income from high-

to low-income locations. With the Weibull, the planner may want to transfer income from

the high- to low-income location or from the low- to the high-income location. Regardless

of the direction of the transfer, the size of the transfer is different than when the preference

draws are from the Fréchet.

We conclude the paper by proposing an adjustment to the planner’s problem where the

planner maximize weighted -average utility. We specify the weights to “undo” the impact

of assumptions of the distribution of the preference draws on optimal redistribution across
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locations; our proposed adjustment will have this effect for almost any standard location-

choice model and any distribution of the preference draws. We study the properties of our

proposed adjusted planning problem for a two-location version of the location-choice model

of the paper, and, an amended version in which one location has a small agglomeration ex-

ternality. In both environments, we derive the planner’s solution for optimal redistribution

of income across locations when households are assumed to not draw location-specific pref-

erences. We simulate the model and compute the solution to the regular and the adjusted

planner’s problem when location-specific preferences are drawn in these environments from

the Fréchet distribution and the Weibull distribution. In the unadjusted planner’s problem,

the direction of the transfers across locations varies between the Fréchet and the Weibull

settings, and neither delivers the analytic solutions we derive in the absence of location-

preference draws. In the adjusted planner’s problem, optimal transfers in the Fréchet and

Weibull settings are identical, and equal to the optimal transfers we compute analytically

when the models do not have location-preference draws.

2. Planning Problem, Full Model

We start by specifying a simple, location-choice model in which the economy consists of

a measure 1 of ex-ante identical households. Throughout the paper, we sometimes refer to

this as a canonical model of Urban Economics. In this model, each household must choose

where to live from one of n = 1, . . . , N discrete locations. Households value consumption,

which is produced and transferrable across locations, and housing, which is not produceable

and not transferrable across locations. Each household living in location n produces zn units

of output; and each household in location n lives in a house of size hn which is equal to

Hn/Ln, where Hn is the stock of housing and Ln is the measure of households living and

working in n.

Denote cn as consumption enjoyed by each household living in location n, not necessarily

equal to zn. Utility of household i choosing to live in location n is:

uin = Anc
1−α
n hαnein
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An are amenities freely enjoyed by all households living in location n. ein is a level of

attachment to location n by household i that varies across locations and households. Each

household draws and observes ein for n = 1, . . . , N before making a location choice and ex-

ante identical households differ only with respect to these draws. In the rest of this section

we assume (as is common) that the ein are drawn iid across locations and households from

the Fréchet distribution with shape parameter ν.

Consider a planner with the objective to maximize expected utility subject to satisfying

aggregate feasibility,
∑

n znLn =
∑

n cnLn, population feasibility, 1 =
∑

n Ln, and respects

that households choose the location offering the maximum value of uin, i.e. household i

chooses n∗ when n∗ = argmax {uin}Nn=1. Define un as utility from location n prior to the

realization of the ein, that is un ≡ uin/ein. Given the assumed distribution of ein, the

probability a household chooses location n, Ln, is equal to (un/U)ν , where U = (
∑

n u
ν
n)1/ν .

U is proportional to expected utility.

Given any desired, exogenously given, (federal) government spending of G, we show in

the appendix that a planner that maximizes U will set cn as follows

cn = (1− τ) zn + T (1)

where

τ =

(
1 + αν

1 + ν

)
and T = τ

∑
n

znLn − G (2)

In other words, the planner takes a constant percentage τ of labor income in each location,

and rebates all proceeds net of government expenditures as a lump sum rebate.1 At a typical

calibration of α = 0.25 (Davis and Ortalo-Magné, 2011) and ν = 2 (Rossi-Hansberg et al.,

2020), τ = 0.5: The planner takes 50 percent of labor income from each location, independent

of amenities or the aggregate quantity of housing in that location.

1It can be shown the planner’s solution is identical when household utility is of the form uin = ν lnAn +
ν (1− α) ln cn + να lnhn + εin and εin is drawn from the Type 1 Extreme Value distribution.
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3. Housing Only, α > 0 and ν → ∞

To understand this result, we start by considering an even simpler model with no location-

specific preference draws, i.e. where ein = 1 for all n and i. In this environment, the

planner will always want to transfer some output from high-productivity to low-productivity

places and the amount of redistribution will depend on the preference for housing relative to

consumption. To see this, consider the limiting case of ν →∞ such that τ = α in equation

(2). The planner will transfer output between any two locations n and m such that

cn − cm = (1− α) (zn − zm)

If zm > zn, the net consumption subsidy to residents of location n from residents of m is

(cn − cm)− (zn − zm) = α (zm − zn)

We have been asked to discuss the degree to which taxes and transfers are required in

the competitive equilibrium to achieve the planner’s desired allocation. The answer, it turns

out, depends on how rental income from housing is distributed in the population.2 Denote

In as per-household income in location n in the competitive equilibrium without taxes and

transfers. Given households have Cobb-Douglas preferences for consumption and housing,

they choose cn and hn to satisfy

cn = (1− α) In and rnhn = αIn (3)

where rn is the rental price per unit of housing in n. Now suppose that In includes labor

income zn and, critically, a lump-sum redistribution of economy-wide rental expenditures,

2To our knowledge, Eeckhout and Guner (2017) are the first to observe the importance of housing insti-
tutions in determining optimal taxation in a location-choice model. For recent discussions of the unequal
geographic burden of federal taxation and redistribution across locations see Albouy (2009) and Albouy
(2012).
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i.e. In = zn + T where T =
∑

n (rnhn)Ln.3 This implies

T = α
∑
n

InLn = α
∑
n

(zn + T )Ln =

(
α

1− α

)∑
n

znLn

implying

cn = (1− α) zn + α
∑
n

znLn

When economy-wide housing rents are lump-sum rebated, the competitive equilibrium with-

out government taxes or transfers yields the identical allocation as the solution to planner’s

problem when G = 0.4 If G > 0, the planning solution is achieved when the government

collects all aggregate rental income and then lump-sum rebates any taxes collected remaining

after G is taken out.5

What happens when housing rents are not assumed to be lump-sum rebated in the

competitive equilibrium? Consider an extreme case in which households in city n only

receive, lump-sum, housing rents paid by residents of city n, i.e.

In = zn + T ′n where T ′n = rnhn

This is similar to a society in which all households are owner-occupiers and none have a

mortgage.6 The competitive equilibrium without taxes and transfers will have as an allo-

cation cn = zn.7 Without taxes and transfers, the consumption differential between any

two cities n and m in this environment is equal to zn − zm. A government that wants to

implement the planning solution must set tax rates equal to α percent of labor income and

3A common assumption to generate this lump-sum redistribution is that each household owns an equal
share of a REIT that owns all of the housing stock in the economy.

4The assumption of Cobb-Douglas preferences for consumption and housing is not key to this result.
We can show that lump-sum redistribution of housing rents is sufficient given any constant-returns utility
function; this result is available on request.

5In the event that G is larger than aggregate housing rents, the government must levy a head tax.
6A natural research question investigates how actual home-ownership affects both the planning solution

and required taxes and transfers. Allowing for home-ownership and associated complications is beyond the
scope of this paper as well as that of nearly all static location-choice models.

7It is quickly shown that rnhn = [α/ (1− α)] zn and thus cn = (1− α) In = zn.
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then rebate the proceeds lump sum.

Rental income is central to redistribution in the planning solution because housing is

supplied inelastically and households must work where they live. Consider the implications

of moving ∆L more people into location n. Given hn = Hn/Ln and Hn is fixed, an increase

of ∆L residents to location n decreases the available housing to all existing residents of

location n. Aggregate utility of existing residents in that location declines by αun∆Ln. To

keep utility constant, the planner must increase total consumption allocated to in city n

by α (1− α)−1 cn∆Ln units. From equation (3) this is equal to rnhn∆Ln. In other words,

when ∆Ln people move to location n, the dollar amount of the loss of utility of existing

residents in location n is equal to the housing rents paid by the new movers. In conclusion,

the planner takes this amount from the new residents such that they internalize the cost

they impose on existing residents. The planner “taxes” all households due to the fact that

each household reduces housing available to everyone else; the tax rate is the same in each

location because rental expenditures are a fixed fraction of consumption in each location; and

aggregate taxes collected by the planner (for redistribution or use in government spending)

is equal to aggregate rental expenditures.

The planner takes τ from each worker to correct the congestion externality imposed by

any individual resident on the population. This delivers the optimal allocation of people to

locations. The planner redistributes the proceeds lump-sum so as not to distort the location

decision.

4. Shocks Only, α = 0 and 0 < ν < ∞

Now that we have studied the role of housing in determining place-based redistribution,

we now investigate how location-attachment draws affect the planner’s solution in a location-

choice model without housing. Jumping to the end, we show that how researchers choose to

model these draws can radically alter predicted optimal place-based redistribution. We find

this result quite troubling because fundamentally the attachment draws are not observable.

Many different modeling choices can yield literally the identical likelihood function over a

location-choice data set (implying, for example, identical distributions of the population

across locations, identical population elasticities with respect to wages, etc.). Each modeling
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choice is likely to yield a different prediction for optimal place-based redistribution.

Here is a very simple, illustrative example. Consider a model in which there are only two

locations, n and m; utility in location n is ln (cn) and utility in location m is ln (cm + eim);

and, eim is an attachment draw for household i that is realized before the location decision is

made and only applies when the household lives in location m. The presence of eim generates

a population elasticity with respect to relative wages. For a household to live in location m,

it must be the case that eim > cn − cm. This implies the marginal utility of consumption of

every household choosing to live in location m, 1/ (cm + eim), is less than the marginal utility

of any household choosing to live in location n, 1/cn. A planner maximizing average utility

has incentives to transfer consumption from location m to location n to exploit differences in

the marginal utility of consumption, regardless of the relative productivity of either location.

However, if researchers assume the attachment draw is in location n instead of m, such that

utility in locations n and m are ln (cn + ein) and ln (cm), using similar reasoning we can show

the planner will always want to transfer resources from n to m. Ultimately, the researcher’s

choice of whether to include eim or ein in the model determines if the planning solution

involves transfers from m to n or from n to m.

This stark example shows the importance of the attachment draws – how they enter

utility and the relative variance of the draws across locations – in determining optimal

transfers across locations. The functional form of the attachment draws matters as well.

Returning to the simple example of section 2, without housing (i.e. α = 0) utility in city n

is Ancnein where ein are assumed to be drawn iid across households and locations from the

Fréchet distribution. The planner’s optimal “tax rate” on income, τ in equation (2), is equal

to 1/ (1 + ν), and this tax rate does not vary with productivity zn or amenities An. The

planner always transfers resources from places with high productivity to places with lower

productivity, such that across-location variation in consumption is less than across-location

variation in income, i.e. cn − cm = (1− τ) (zn − zm).

This stark result, while convenient, does not hold if we assume the ein are drawn from

a different, but very similar distribution. Consider the case where the location preference
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shocks are drawn from the closely-related Weibull distribution with shape parameter k.8

Figure 1 graphs the pdfs of these two distributions, with the values ν = 2 for the Fréchet

(red solid line) and k = 2 for the Weibull (blue dashed line) chosen for reasons we discuss

later. These two distributions look similar but the thickness of the right tails are different,

and in the case of predicting optimal transfers this might matter quite a bit: Households

only move to low-wage locations if their location-preference draw is sufficiently large.

It is possible to show that when the ein terms are drawn from the Fréchet with parameter

ν, the elasticity of relative population with respect to relative consumption is equal to ν, i.e.

d ln (Ln/Lm)

d ln (cn/cm)
= ν

Rossi-Hansberg et al. (2020) suggest this elasticity is approximately 2. We show in Appendix

B for an economy in which there are only two locations that when ein terms are drawn from

the Weibull, this elasticity of relative population with respect to relative consumption is equal

to k, the shape parameter of the Weibull distribution. For this reason, we set k = ν = 2 in

the examples that follow.

We use simulations to compute optimal transfers across locations when the ein terms

are drawn from the Weibull. In figure 2 we show optimal transfers across locations in a

two-location economy when the ein terms are drawn from the Fréchet distribution at ν = 2

and the Weibull distribution at k = 2. The x-axis of this figure is the ratio of productivity in

location n to location m – we consider values in the range 0.8 ≤ zn/zm ≤ 1.0 – and the y-axis

is the ratio of consumption in the two locations after the planner has optimally redistributed

income. The solid-black line traces out points where the ratio of consumption is equal to

the ratio of income and no redistribution has occurred. Any value of cn/cm that lies above

the solid-black line indicates that the planner is redistributing income from location m, the

more productive location, to location n. Conversely, any value of cn/cm that lies below the

solid-black line indicates the planner redistributes income from the less-productive to the

more-productive location.

8For reference, the pdf of the Fréchet with parameter ν is νx−1−νe−x
−ν

and the pdf of the Weibull with

parameter k is kxk−1e−x
k

.
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The solid red line in this graph shows the choice of the planner for cn/cm given zn/zm

when the ein terms are drawn from the Fréchet. This solid red line is everywhere above the 45

degree line, consistent with the redistribution from high- to low-income locations prescribed

by section 2. As equations (1) and (2) show, the planner’s choice of cn/cm when the shocks

are drawn from the Fréchet only depends on zn and zm and does not depend on the values

of fixed amenities in locations n or m, An and Am.

The blue lines on this graph show similar results when the ein terms are drawn from

the Weibull distribution. We consider three values for Am/An: 1.0 (dashed line), 1.5 (dash-

dot line), and 3.0 (dash-dash-dot-dot line). The results for Am/An = 1 highlight how the

differences in the distributions affect expected average marginal utilities, as the decision to

locate in location 1 satisfies ein > (cm/cn) eim and the marginal utilities in each location are

Anein and Ameim, respectively. The planner still redistributes from the more productive to

less productive location, as the blue-dashed line lies above the solid black (no-redistribution)

line, but the planner redistributes less than when shocks are drawn from the Fréchet, as the

blue-dashed line lies everywhere beneath the red line. That said, when the ein terms are

drawn from the Weibull the value of Am/An also determines the direction of transfers. For

both Am/An equal to 1.5 and 3.0, the planner chooses to transfer resources from residents of

the low-productivity location and to residents of the high-productivity location for all values

of zn/zm we consider.

In our view, these results are potentially problematic for researchers studying place-based

redistribution. We do not know the distribution of the unobserved attachment draws (or

even how they should enter utility), but these features determine not only the size of transfers

across locations but also the direction. In the example, we calibrated the parameter of the

Fréchet and the Weibull distribution to match a typical moment used in calibrations of

models of Urban Economics, the sensitivity of the population to changes in relative wages.

Yet, even with this discipline, transfers with the Weibull shocks in our simple model had the

potential to be completely different than transfers with the Fréchet, depending on the values

of the relative amenities, Am and An.

Why doesn’t the elasticity of location choice with respect to relative wages pin down

transfers? This elasticity is informative about the distribution of preference draws for peo-
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ple that are only marginally attached to their location. The optimal amount of redistribution

across locations depends on the average marginal utility of consumption of households in each

location. These average marginal utilities depend on the preference draws for households

that are unlikely to move. For example, if two distributions have different shapes for these

households – i.e. if the right tails of the distributions in figure 1 are very different – then

optimal transfers are likely to be different as well. In principle, the shape of these distribu-

tions is simply not identifiable, as many different distributions will generate the exact same

location choices.

5. Adjusting the Planning Problem

So far, we have discussed two reasons why the planner would want to redistribute re-

sources across cities: (1) to account for the fact that location choices of individual households

affect the quantity of housing available to all others and (2) to account for the fact that

location-attachment draws that determine location choice are uninsured and affect location

choices, the level of utility, and marginal utility. As mentioned, we find this second reason

troublesome since researchers do not observe the distribution of these attachment draws.9

In this section we propose an adjustment to the planning problem that preserves what we

believe are fundamental economic reasons for transfers across locations, for example those

related to housing congestion or externalities, but eliminates transfers that arise due to the

presence of the attachment draws.

Define O as the planner’s objective function. We propose

O =

∫
i

ωiu
(
cin, h

i
n, e

i
n

)
di (4)

This is weighted-average utility of all households in the economy after all location preference

shocks have been revealed and all location-decision decisions have been made. To eliminate

transfers that arise only due to the distribution of the ein, the weight for each household, ωi,

should be equal to the inverse of the marginal utility of consumption for that household. The

9Additionally, we are unsure how to use data to guide how these draws should affect utility.
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ωi can be determined with the following straightforward, iterative computational procedure:

Step 1. Draw all values of ein for all households all i and locations n. These are held fixed in

all model simulations. Set ωi = 1 for all households.

Step 2. Solve the planning problem to determine optimal transfers across locations when the

planner maximizes the objective specified in equation (4).

Step 3. Record each household’s location decision and marginal utility of consumption after

the optimal policy of step 2 is implemented. Denote n∗i as the chosen location for

household i and µi (n
∗
i ) as the marginal utility of consumption for household i at n∗i .

Step 4. Redefine the weight to be used in equation (4) for each household as the inverse of the

marginal utility of consumption, ωi ≡ [µi (n
∗
i )]
−1.

Step 5. Repeat Steps 2-4 until the set of predicted optimal transfers across locations converges.

Why does this work? Due to the way in which we define ωi, a small change in consumption

to any household will affect O by exactly the same amount. This implies the value of the

planner’s objective will not increase simply by shuffling consumption around (if that were

feasible) due to differences in the marginal utility of consumption resulting from different

draws of ein. For this reason, once the weights are applied the planner only has incentives

to redistribute based on housing congestion or other externalities.

To illustrate how this might work in practice, consider the canonical model described

in section 2 with ein drawn iid from the Fréchet and from the Weibull. Assume, as before,

ν = k = 2 and consider the specific example setting Am = 1.5, An = 1.0, zm = 1.1,

zn = 1.0 and α = 0.25. n in this case is a low-productivity, low-amenity location. The 4

panels of Figure 3 show predictions for optimal place-based redistribution. In each panel,

the value of the planner’s objective function is on the y-axis and the x-axis shows the size

and direction of the net subsidy from m to n, where we define the net subsidy (as before) as

(cn − cm)− (zn − zm). If the net subsidy is positive, the planner transfers income from the

high- to the low-productivity location, and if it is negative the planner transfers income in the

opposite direction. We know in the case of the canonical model with no location preference
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draws, i.e. ein = 1 always, that the net subsidy is α (zm − zn) which is equal to 0.025 given

our parameterization. The influence of the assumed distribution of the location-preference

draws on results can be interpreted as the difference between the computed optimal transfer

and 0.025.

The left two panels shows the optimal transfers when the planner maximizes unweighted

expected utility, i.e. when ωi = 1 for all i. Given zn and zm have the interpretation of being

the wage rates in locations n and m, when the location-preference draws are Fréchet, top-left

panel, the planner chooses to transfer resources from the high- to low- wage location: The

net subsidy to n is 0.05. The bottom-left panel shows that when the draws are Weibull, the

planner chosen to transfer resources from the low- to high-wage location: The net subsidy

to n is -0.024. Thus, the distribution of ein determines both th size and the direction of

optimal transfers. The right two panels show optimal transfers of the corrected planning

problem in equation (4) after the weights ωi have converged. For both the Fréchet (top-

right) and Weibull (bottom-right) draws, the planner redistributes from the high- to the

low-productivity city and the net subsidy is 0.025, exactly the analytic solution to the model

lacking location-preference draws.

Next, we add add agglomeration effects to the model to show how our proposed correction

affects predicted optimal redistribution in the event of a production externality. Define

output in each city, yn, as

City n, no change yn = wnLn wn = zn

City m, agglomeration ym = wmLm wm = zmL
δ
m

where δ > 0 is the agglomeration effect. We do not change any other facet of the model. This

model has the virtue of being simple enough such that we analytically derive in Appendix C

the solution to the planner problem for optimal consumption in each location in the absence

of location-preference draws, i.e. when ein = 1 and eim = 1 for all households i. This is:

cn = (1− α) [wn − δym] + α ·GDP

cm = (1− α) [(1 + δ)wm − δym] + α ·GDP
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which implies a net subsidy of

(cn − cm)− (wn − wm) = α (wm − wn)− (1− α) δwm

Although the exact value of the net subsidy will depend on Lm, given our parameterization

it will be very nearly equal to 0.

Figure 4 shows the impact of the correction on the planner’s problem in this model. We

set δ = 0.03 but otherwise all parameters and all values of A and z terms are the same as

in the previous example. Figure 4 follows the same format as figure 3: The top two panels

show results for the Fréchet draws and the bottom two panels show results for the Weibull

draws; the left two panels show results when the planner maximizes expected utility and the

right two panels show results when the planner maximizes equation (4).

The results when the planner maximizes expected utility are similar to those when there

is no externality: In the case of Fréchet location shocks, top-left panel, the planner transfers

resources from the more productive location, location m, to the less productive location,

location n, and in the case of the Weibull location draws, bottom-left panel, the transfers

go in the opposite direction. In contrast, once the planner solves the corrected problem, the

planner chooses not to transfer any resources from location m to location n – exactly the

same as the analytic solution we derived when ein = eim = 1 for all households.

6. Conclusion

Our investigation of optimal place-based redistribution in simple location-choice model

yields three main insights. First, the presence of a fixed stock of housing in eah location

is sufficient to generate optimal transfers across locations. The planning allocation and the

allocation arising from a competitive equilibrium only coincide when aggregate housing rents

are lump-sum rebated; otherwise taxes and transfers are needed. Second, the presence of

uninsured location-preference draws also generates desired redistribution across locations.

The specific distribution of the draws (as well as the way the draws are assumed to enter

utility) affect the size and direction of predicted optimal transfers. As we emphasize, we find

this last result troublesome, since data do not provide guidance on these preferences. We

15



therefore propose an adjustment to the planning problem such that a planner’s predicted

optimal redistribution of income across locations does not depend on the way in which

unobserved location-preference draws are modeled.
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Figure 1: Pdfs of Fréchet (ν = 2) and Weibull (k = 2)
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Figure 2: Optimal Transfers in a Simple Urban Model, ν = k = 2

.6
.7

.8
.9

1
 

.8 .85 .9 .95 1

zn / zm

Weibull, Am / An= 1.0

Weibull, Am / An=1.5

Weibull, Am / An=3.0

Fréchet

cn / cm = zn / zm

 cn / cm

19



Figure 3: The Impact of the Correction to the Planner’s Problem
Model with No Agglomeration Externality
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Figure 4: The Impact of the Correction on the Planner’s Problem
Model with Agglomeration Externality
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Appendix A. Planning Solution, Canonical Model

Denote cn as consumption in location n, hn as the per-capita amount of housing in

location n defined as the housing stock in location n, Hn, divided by the population in

location n, Ln. Let G denote the pre-determined amount of government expenditure that

needs to be funded by income taxation. The planner solves:

max
{cn,hn,Ln}Nn=1

U

subject to the following constraints (Lagrange multipliers are to the left of the brackets)

Expected Utility λ

[(∑
n

uνn

) 1
ν

− U

]
= 0

Resource constraint (1− α)P

[∑
n

Lnzn −
∑
n

Lncn −G
]

= 0

Population: µ

[
1−

∑
n

Ln

]
= 0

Utility n=1,. . . ,N θn [Anc
1−α
n hαn − un] = 0

Housing n=1,. . . ,N αφn

[
Hn

Ln
− hn

]
= 0

Individual optimization n=1,. . . ,N: Wn

[(un
U

)ν
− Ln

]
= 0

First-order conditions are

un : 0 = λLnU − θnun + WnνLn

cn : 0 = θnun − PLncn

hn : 0 = θnun − φnhn

Ln : 0 = (1− α)P (zn − cn)Ln − αφnhn − WnLn − µLn

U : 0 = 1− λ − (ν/U)
∑

nWnLn

From the FOC for U we have (ν/U) (
∑

nWnLn) = 1 − λ. Add the Focs for un to get 1 =∑
n θn (un/U). Now add the FOCs for cn to get (U/P ) = GDP −G where GDP =

∑
n

znLn.

Now start with the FOC for L1

0 = (1− α)P (z1 − c1)L1 − αφ1h1 − W1L1 − µL1
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Note that φ1h1 = θ1u1 = PL1c1 and insert to get

0 = (1− α)PL1z1 − PL1c1 − W1L1 − µL1

Now use FOC for un

WnLn =
1

ν
(θnun) − 1

ν
(λLnU) =

1

ν
(PLncn) − 1

ν
(λLnU)

Insert

0 = (1− α)PLnzn − PLncn −
1

ν
(PLncn) +

1

ν
(λLnU) − µLn

=

[
ν (1− α)

1 + ν

]
zn − cn +

(
λ− µ/U

1 + ν

)(
U

P

)

Substituting for U/P gives

cn =

[
(1− α) ν

1 + ν

]
zn +

(
λ− µ/U

1 + ν

)
[GDP −G] (A.1)

Note that

(1 + αν)GDP = (λ− µ/U) (GDP −G) + (1 + ν)G (A.2)

After inserting equation (A.2) into (A.1), we get the following expression for optimal con-

sumption in city n

cn = (1− τ) zn + T

where τ =

(
1 + αν

1 + ν

)
and T = τ ·GDP − G
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Appendix B. Notes on the Two-Location Model with Weibull Draws

Consider the simple model with two locations in which household i occupies city n only

if Ancnein > Amcmeim, where the variables ein and eim are drawn independently from a

cumulative distribution function F . Previously, we considered the case where F is the

Fréchet distribution (also know as the inverse Weibull distribution) with shape parameter

ν > 0, F (x) = e−x
−ν

. Now consider the case where F is the Weibull distribution with

shape parameter k > 0, F (x) = 1 − e−x
k
. We begin by noting that ein and eim being

independent Weibull (shape k) means that (ein, eim) = (U1/k, V 1/k) where U and V are

standard exponential. We can now write,

ein > teim ←→ U1/k > tV 1/k

V < rU

where r = t−k. Since U and V are independent,

Pr(V < rU) = 1− e−rU (B.1)

Note that the the probability the household chooses location 1, the expected value of

(B.1), is equal to 1− (1 + r)−1. Therefore (1 + r)−1 is the probability the household chooses

location two, giving us

Ln
Lm

=
1− (1 + r)−1

(1 + r)−1
=

1

(1 + r)−1
− 1 = (1 + r)− 1 = r

=

(
Ancn
Amcm

)k
where the last line uses r = t−1/k. This implies that the elasticity of relative location choice

with respect to relative consumption, d ln(Ln/Lm)
d ln(cn/cm)

is k. Recall that this elasticity is equal to

ν when en and em are drawn from Fréchet. This is why we set ν = k in our numerical

experiments.
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Appendix C. Planning Solution, Two Location Model with Agglomeration in

One Location

The planning problem for the two-location model with no location-preference draws and

with agglomeration externalities in one location follows:

max
cn,cm,Ln,Lm

U

subject to 0 = P
[
Lnzn + L1+δ

m zm − Lmcm − Lncn
]

0 = µ [1− Ln − Lm]

0 = Wn

[
AnH

α
n c

1−α
n L−αn − U

]
0 = Wm

[
AmH

α
mc

1−α
m L−αm − U

]
The first order conditions are

cn : PLncn = (1− α)WnU

cm : PLmcm = (1− α)WmU

Ln : µLn = PLn [zn − cn]− αWnU

Lm : µLm = PLm
[
(1 + δ)Lδmzm − cm

]
− αWmU

U : 0 = 1−Wn −Wm

From the last FOC we know Wn + Wm = 1. Add the FOCs for cm and cn and use the fact

that Lncn + Lmcm = GDP to get

P ·GDP = (1− α)U and thus
U

P
=

GDP

1− α

which implies

Wn =
Lncn
GDP

and Wm =
Lmcm
GDP
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Now add FOCs for Ln and Lm and use resource constraint to get

µ (Ln + Lm) = P [znLn − cnLn] + P
[
(1 + δ)L1+δ

m zm − cmLm
]
− α (Wn +Wm)U

µ = PδYm − αU

where Ym = L1+δ
m zm. Now derive result for optimal consumption starting with FOC for Ln

µLn = PLn [zn − cn] − αWnU

(PδYm − αU)Ln = PLn [zn − cn] − αWnU

(1− α) δYmLn − α ·GDP · Ln = (1− α) znLn − (1− α) cnLn − αcnLn

cnLn = (1− α) (zn − δYm)Ln + α ·GDP · Ln

cn = (1− α) (zn − δYm) + α ·GDP

after similar math for cm we get the result

cm = (1− α)
[
(1 + δ)Lδmzm − δYm

]
+ α ·GDP
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